NAVAL POSTGRADUATE SCHOOL
Monterey, California

AUTOMATED GENERATION OF
WRAPPERS FOR INTEROPERABILITY
By
Cheng Heng Ngom
March 2000
Thesis Advisor: Valdis Berzins
Second Reader: Swapan Bhattacharya

Approved for public release; distribution is unlimited.

e 20000525 050

Form Approved

REPORT DOCUMENTATION PAGE O o188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction,
searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send
comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to
Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA
22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503.

3. REPORT TYPE AND DATES COVERED
Master’s Thesis

2. REPORT DATE
March 2000

1. AGENCY USE ONLY (Leave blank)

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

Automated Generation Of Wrappers For Interoperability

6. AUTHOR(S)
Cheng Heng Ngom

8. PERFORMING
ORGANIZATION REPORT
NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

10. SPONSORING /
MONITORING
AGENCY REPORT NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)

11. SUPPLEMENTARY NOTES
The views expressed in this thesis are those of the author and do not reflect the official policy or position of the Department of
Defense or the U.S. Government.

12a. DISTRIBUTION / AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; distribution is unlimited.

ABSTRACT (maximum 200 words)

Interoperability between software systems is the ability to exchange services from one system to another. In order to
exchange services, data and commands are relayed from the service providers to the requesters. Presently, there are some
interoperability techniques that aid the exchange of information, ranging from low-level sockets and messaging techniques to more
sophisticated middleware technology like object resource brokers. Middleware technology uses higher abstraction than messaging,
and can simplify the construction of interoperable applications. It provides a bridge between the service provider and requester by
providing standardized mechanisms that handle communication, data exchange and type marshalling. However, in current
interoperability techniques, data and services are tightly coupled to a particular server. Furthermore, most developers are trained in
developing stand-alone applications rather than distributed applications. This thesis aims at developing a generic interface wrapper
that can be used to separate the data and services from the server, and allows the developers to treat distributed data and services as
those they are local within an application process space. In addition, the research developed a program to fully automate the process
of generating the interface wrapper directly from a specification language such as Prototype System Description Language (PSDL).

14. SUBJECT TERMS 15. NUMBER OF

Interoperability with JavaSpace, Jini, Loosely-Coupled Distributed Systems, Prototype System Description PAGES
Language, Computer Aided Prototype System. 154
16. PRICE CODE
17. SECURITY CLASSIFICATION OF | 13. SECURITY CLASSIFICATION OF | 49, SECURITY CLASSIFI- CATION Pkl
REPORT Unclassified OF ABSTRACT
Unclassified nclassihie Unclassified UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. 239-18

THIS PAGE IS INTENTIONALLY LEFT BLANK

ii

Approved for public release; distribution is unlimited

AUTOMATED GENERATION OF WRAPPERS FOR INTEROPERABILITY

Cheng Heng Ngom
Ministry of Defense, Singapore
B.Eng. (Hons),
Nanyang Technological University Singapore, 1985

l Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE
from the

NAVAL POSTGRADUATE SCHOOL

March 2000
Author: % M
Cheng Heng Ngom -
1 "’_,»""1:_,! /.v /_. N / - ¢ L
Approved by: 8, 7. P DY .;«.,/‘{/A

‘ Valciis Beézjins, Thesis Advisor

Swapan Bhattacharya, Second RJQder

;) Prgy

il
Dan Boger, Chairm
Department of Computer Science

iii

THIS PAGE IS INTENTIONALLY LEFT BLANK

v

ABSTRACT

Interoperability between software systems 1is the
ability to exchange services from one system to another. In
order to exchange services, data and commands are relayed
from the service providers to the requesters. Presently,
there are some interoperability techniques that aid the
exchange of information, ranging from low-level sockets and
messaging techniques to more sophisticated middleware
technology 1like object resource brokers (CORBA, DCOM).
Middleware technology uses higher abstraction than
messaging, and can simplify the construction of
interoperable applications. It provides a bridge between the
service provider and requester by providing standardized
mechanisms that handle communication, data exchange and type
-marshalling. However, in current interoperability
techniques, data and services are tightly cdupled to a
particular server. Furthermore, most‘developers are trained
in developing stand-alone applications rather than
distributed applications. This thesis aims at developing a
generic interface wrapper that can be used to separate the
data and services from the server, and allows the developers
to treat distributed data and services as those they are
local within an application process space. In addition, the
research developed a program to fully automate the process

of generating the interface wrapper directly from a

specification language such as Prototype System Description

Language (PSDL) .

vi

Table of Contents

L INTRODUCTION 1
A BACKGROUND ...onviieeeereertesseseseeasessssssssssassssssrassssssssssessasssstosssssnssasssssenssmnsssssassanssossresssssssessnsrasssosssares 1.

B. CURRENT STATE-OF-THE-ART SOLUTIONS ...ectetiuietteccarcesenssrussiacesrsessrssssaresenssssesssanassesssnssasssrassossensnes 1

C. MOTIVATION . ..oeeeteeeeeeeeeeeseeeeesessresassssssessssbesessasesssesearssssessasssssessssssaneerasesasiosssressesrsssssnssnsnsssarassanasses 3

D P ROPOSAL...oeeienieieieeiietetersecrersssasarssssuersassssanssssseraressassesssssssssssssensnansssstsesssnsnssestssessssesssssanssssesassserssnce 3
II. REVIEW OF EXISTING WORKS: 5
A. ORB APPROACHES .. ceeevetteiarereseeressssassestonssssassssssasassessssssssssssessssssasssissinssassmssarasassasesssssosesrostsssentasens 5

B. P RO T O T Y PING .eutvevieeienererereseresesesnssessessssenesnsnsssssesaresssstossasesssassssssssssssnstsssssnssssessarasansassssscsasssstasssesnaan 6

C. TRANSACTION HANDLING....c..octtereiirerreesueeesseesessssssaessssasssessansaeassesssssssasssiossnsssnsessssanssssansssessarasssnesants 7
1. THE BASIC MODEL 9
A JAVASPACE MODEL ...coereeteerieeeeeevessssesissesessssssessassessssssasssssassssesessssassssssssssssassssssssasassssnsasssssressoranases 9

B. ALCG MODEL....ueoeeeeeeeeeeetesctreseesesssssesssessessseessesssessassasssesssesessesesntossisssisssessarssansassssenssnassasssanssnssnes 11
IV. DEVELOPING DISTRIBUTED APPLICATIONS WITH THE AICG TOOL ereee 18
A. DEVELOPMENT PROCEDURES ..cuucuvtvettreeeessiesssssecsserssesnsaessssssssesssssssssssssesssssrsssssesssseasesssssansansrsorssassss 15

B. INPUT DEFINITION TO THE CODE GENERATOR ...ccuuuuuuieeereerrnsnssreenrssesssmssssasessssessessrssssresssssssssssesannnnnns 17

C. RUNNING THE PSDL2SPACE PROGRAMccttvmmrrrnnriaresseenrerssassonssecsstssssssssessrsasssssssassssssansnnssssassasnsns 23

D. THE SERVER SIDE OF TRACK ..ccevuieerruneneccerecermanessnsees eeseeesnincssiessesenrarearratntntnnsatarenesaserassstnansearrnsraren 24

E. THE CLIENT SIDE OF TRACK WITHOUT EVENT-NOTIFICATION ENABLED.....ccctvumtmrennneereennrescscsonacnnens 26

F. THE CLIENT SIDE OF TRACK WITH EVENT-NOTIFICATION ENABLEDcccccretierercincenienreenessssesesnenes 27
V. CHARACTERISTICS OF AICG MODEL 29
A. DISTRIBUTED DATA STRUCTURE AND LOOSELY COUPLED PROGRAMMINGccoseterrrsnmieresssnreecronnnes 29

B. SYNCHRONIZATION ..o tiiviereeeereresssntncssssssssnsessssssssesssssssssassesssssssssasasstsssssssstssssassssssssassenssssssesssastssoscans 32

C. OBIECT LIFE TIME (LEASES/TIMEOUT) ..ccccutureuneuremnemsersssensescmemsesssssssssssenesiessassasassssssssssesssssssssessess 34

D. TRANSACTIONS ..cveeeeeeeererrrereresssssessasessrsresssaasssssssesssosastassssessassanesssnssssssressisssasssssssesssssnsssnneanesesanssssase 36

1. JInE TranSACiON MOELeueeeeeeeeeceeeeeeeieeiieeesesaeeeeessesaaaeassereeesesaaaneetesssesssntsasasaasesasnasnas 36

2. AICG TransaCtion MOGELueeeeeeeeeeereeeeeeeeeeeecrvvesiasseeassssesaraseasaraesessessesisssrasessrnsasnses 37

E. AICG EVENT NOTIFICATION. ...ccuuteuereenrieieraeceerssrcsersrsssssssssessessssssessssesecsssssssassssessssssssnsssannsssssnasssasese 38
VI. AICG DESIGN 41
A. AJCG ARCHITECTUREotreeeeeerreressrseersrseseessssssesssssersssesasssssssssessssastsssssseesssssssssssasnssssssasssssssasasssssnes 41

B. INTERFACE MODULES ceuutieemeeeesssesssessessssserssessssssesessarssssssnssssssssssssssssstecesessseacsssssssssssanssssnsnsssnvassennes 44

L. BRIttt s s 44

2. SO IALIZALION <. eeeeeeeeeeaveseeesesseessnees e ssasasasaassmeesaesasesaaaseeesssessssnnnaesenssnnsaassssnass 47

3. The Actual Distributed OBJECt.............ceucemeeriiiniiniinieiieteetpee ettt 48

4. OBJECE WTADPET ...t ere ettt b 49

C. EVENT MODULES....cccostttteeeersresrssnsnsosresiersiasssssesssssssassesssssossssssessssssssassesssssssssssssssssssssnsanssssessesssessase 51

1. Event Identification ClaSScccccciireeesiinenriinnsess s ss sttt sttt st sas st 51

2. EVENE HANAIEY ..o eeeeeeeeeetreeseeaevveessssnnaaeessasanasansaaaassesabetaeeseneabaaeesasassasrasnnntnnsasaanns 51

3. The Callback Templateccocecioiinnimmiineeie ettt s 53

D. THE TRANSACTION IMODULES ... citeviutunriteiseesersessennsnsnsesessssnesramssssssstosenssssissasssssransssssssnsnsssnsssssansass 53

E. THE EXCEPTION MODULEcuntteeeiiniieernniessssaiesssseseessssnsssssssassnsssssssssssasscesssasnsesssinsssssrssssssnssannassennns 54
VII. CONCLUSIONS AND RECOMMENDATION 57
A, CONGCLUSIONS. ..cceceeeteeteeeeeeeetseesseesssesesssessssaasssssssassesessasessesasssessssessessrsnssssssrsarsssnresssssesssraasassss 57

B. RECOMMENDATIONS. ..cttctttteteeeecesesensssrasessessssssasemsmnsassssssassessrnssassassssssesssssrssasanssnssasassssannssssssssssseass 58

vii

1. Graphical User INterface (GUI)............ouueueeueeeeeeeeeeeeeeeeeeeeeeeeeveveeeeseeereeetee oo eeseenesaesessesenen 59

2. Integration With The CAPS SYSTEM.........eeceeeeeeeeeeeeeeeeeeeeeeeeeeeeseeeses e eesseereesaee e s e e er s 59
APPENDIX A. PSDL. GRAMMAR 61
EXTENSION TO PSDL FOR AICG MODELc.uveiutiiteeeteteeeeesseseesseesssessssssnsssessesssssssssssssssssessssesssssssssssssess 64
APPENDIX B. EXAMPLES OF GENERATED INTERFACE WRAPPER 65
ENTRYATICGIAVA ..ottt eeesee st e eeesae s es s sae s s e e e eseassensemsesenee e s s e s e e see e s e 65
TRACKUJAVA ittt e st sa s s e s s n s e sssseesessssssstsssasasaresatessesasssssnannesnssseeseseaeensasesesesesssnsssens 66
TRACKENTRY JAVA ..cuiitiitieeeeniecteeeeeseetessteesesesteseesaesssaessasasesesasenssessessssssesssssssessssassesmsesmeessesasssesssemeses 67
TRACKEXTJAVA. ..coriieetitietiestereeesiereesesssesseesesessesssesseessessnssmeessesesasessenssasasessassssessssssesssesnssssssesesssssssssessses 68
TRACKEXTCLIENT.JAVA ...uutiutirieremeereeeeseesesseseeeseeesesssessaceseenteemeessasesesasssssssssessssnsssmesnnssmrsssesssmsesns soeees 69
TRACKEXTSERVERJAVAc.covtiuiterenitenteeseestesssesiosessessesssoeesseseesesessesssesessssnsasesasssssssssessensensessssssssssssmssonaes 71
NOTIFYATICGIAVA ...ttt e e et st e e s e e e e e eae e s seessa e enesasssansssemsessee e e se e eme st e e e 75
EVENTAICGIDJAVA. ...ttt ettt teseeseseseeto e seassanes s s asssesasasesseessseessmsasesseeesssesssssaes 75
EVENTAICGHANDLERJAVA ..ottt eeeeeeeeeeesseessesesessessssessesssssessesessssssssessessesessestmsemeememeeeesees 76
TRANSACTIONATICGLIAVA ...ttt e st s e e e eesseeseessses e eesessssasesessess e neseesesensss s e seeseaes 80
TRANSACTINMANAGERAICGLIAVA.....oovveeeeeieteireete e eeeeeeeeesesssssessseeaseseasesessassessssessesssssesssssssssnsesseseenss 81
EXCEPTIONAICG.JAVA....c.utiirteieteeterecteeteeteesteeteseteasestsetestesesseseensssesesssnsasessssssessessensenssssessssesensonssseesses 82
SPACEATCG.IAVA ...ttt ettt e et eesteee e e see e s e e s e essaeeseesssssesesessemee e e s s s s e s s s sem e e sesee e 84
POSITION_TYPEJAVA .. iciiuieienieteeeteeiescesaeessssnseeessesessesesssasesssesssessssessassssssesssesssssssssssssssssssssssssssssssssssssns 85
APPENDIX C. PSDL2SPACE CODE LISTINGS 87
AUTOMOCODEEXCEPTION.JAVA. ...cuieuiieieietieeetteeieessteseeseesaeeesesseesmsssssssessssssosssssssssssmsssssssesesssssssesesessesea 87
CLASSDEFINITION.JAVA ...uviiuiicuiirereteesteeeeeeeeeesssessasaesstesaesesessessssssssaasasssseessssessssssesssesnsssseseeeesssssssssssssses 89
CLASSIDDEFINITIONJAVAoetieuvieeeneeereeeeeseieaeeneeessesesseessassasessessessesasssssessssssresesssssssssssssssssssesss s eseesmees 93
DEFINITIONJAVA .. rtriteurenteestesieseeseeneseesseesssesasessessesasesaeeseenseneesssssenssssssessesseseessesneesesasesssssessesssesssseseses 94
METHODDEFINITION.JAVAcviiiiieeteettieeeeeeeeeeseseseeeseeeesaseesesnssssesssessseesesssesseessnssssseseeesssss e e se st esen 96
READER.JAVA ..cotiiitietrtesteeterteee et se e e e esaesbessese e emeeseesas et eesseasenasssassssesses e nesnssnseeneessenesseessssessesaes 101
SPACEPROPERTIES.JAVA ...coiiiieiittieetreecietneeeseieeessetessessneassseeasseesssssesessssessssssssessssasssssssesssssessmessessssssss 103
VARAIBLEDEFINITION.JAVA ..cciiiiiiirtenierecrereeeessseseseeeessesesssssessnesesseeesssesasssssssssnssssessessessessssssssssssossnssssnes 106
PSDLDEFINITION.JAVA....ciitiiiiaitranitiaerertresenseseeessssessssssesssssessesesaseessssssssessessssssssesssssssssssnsesssesssssssssssssses 109
PSDLREADER.JAVA ...uutiiiiciitmieecneieerntieeeeiieaseaseseressssesiesssssssessessesessmsessesssssassesssnsesesssssssnsssesssssssssesssssnsess 111
APPBUILDERJAVA L..cumiiiitiiieceieeiiteneeeisesssssseeeseeeessnesssnssesessssens eereeeateeeareeeseresasenaeteseasasnareaneesasneesaannn 119
APPENDIX D. SETTING UP THE JAVASPACE ENVIRONMENT 135
EXTRACTED FROM THE NUTS AND BOLTS OF COMPILING AND RUNNING JAVASPACES PROGRAMS BY
SUSANNE HUPFERcoutrteiiteeieecinesiesessesessesscssseeseeseeneessaeeeseessessasesssssssssessesssessessssssssnsssssssssssessessossssoeenene 135
LIST OF REFERENCES 151
INITIAL DISTRIBUTION LIST 153

viii

ACKNOWLEGEMENTS

.My sincerest appreciation and thanks to my thesis
advisor, Professor Valdis Berzins. His knowledge of the
field is extraordinary and he provided many insightful
ideas, assistance, and support.

I would also like to give special thanks to Professor
Swapan Bhattacharya for working diligent hours in helping me

in the thesis.

- Ngom H. Cheng

ix

THIS PAGE IS INTENTIONALLY LEFT BLANK

I. INTRODUCTION

A. BACKGROUND

Interoperability between software systems 1is the
ability to exchange services from gne system to another. In
order to exchange services, data and commands are relayed
from the service providers to the requesters. Current
business and military systéms are typically 2-tier or 3-tier
systems involving clients and servers, each running on
different machines in the same or different locations.
Current approaches for n-tier systems have no
standardization of protocol, data representatioh, invocation
techniques etc. Other problems with interoperability are the
implementation of distributed systems and the wuse of
services from heterogeneous operating environments. These
include issues concerning sharing of information amongst
various operating systems, and the necessity'for evolution
of standards for using data of various types, sizes and byte
ordering, in order to make them suitable for interoperation.
These problems make interoperable applications difficult to

construct and manage.

B. CURRENT STATE-OF-THE-ART SOLUTIONS
Presently, the solutions attempting to address these
interoperability problems range from low-level sockets and

messaging techniques to more sophisticated middleware

technology 1like object resource brokers (CORBA, DCOM) .
Middleware technology uses higher abstraction than
messaging, and can simplify the construction of
interoperable applications. It provides a bridge befween the
service provider and requester by providing standardized
mechanisms that handle communication, data exchange and type
marshalling. The 'implementation. details of the middleware
are generally not important to developers building the
systems. Instead, developers are concerned with service
interface details. This form of information hiding enhances
system maintainability by encapsulating the communication
mechanisms from the developers and 'providing a stable
interface services for the developers. However, developers
still need to perform significant work in incorporating the
middleware’s services into their systems. Furthermore, they
must have a good knowledge of how to deploy the middleware
services to fully exploit the features provided.

Current middleware approaches have another major
limitation in the design - the data and services are tightly
coupled to the servers. Any attempt to parallelize or
distribute a computation across several machines therefore
encounters complicated issues due to this tight control of

the server process on the data.

C. MOTIVATION

Distributed data structures provide an entirely
different paradigm. Here, data is no longer coupled to any
particular process. Methods and services that work on the
data are also uncoupled from any particular process.
Processes can now work on different pieces of data at the
same time. So far, building distributed data structures
together with their requisite interface has proved to be
more daunting than other conventional interoperability
middleware techniques.}The arrival of JavaSpace has changed
the scenario to some extent. It allows easy creation and
access of distributed objects. However, issues concerning
data getting lost in the network, duplicated data items,
out-dated data, external exception handling and handshaking
of communication between the data owner and data users are
still open. The developers héve to devise ways to solve

those problems and standardize them between applications.

D. PROPOSAL

The situation concerning interoperability would greatly
improve if a developer working on some particular
application were provided with the features capable of
treating distributed objects as 1local objects within the
application. The developers could then modify | the
distributed object as if it is local within the process. The

changes may, however, still need to be reflected on other

applications using that distributed object without creating
any problems related to inconsistency. The present thesis
aims at attaining this objective by creating a model of an
interface wrapper that can be used for a variety of
distributed objects. In addition, by automating the process
of generating the. interface wrapper directly from the
interface specification of the requirement, developers’
productivity is greatly improved.

The tool, named the Automated Interface Codes Generator
(AICG), has been developed to generate the interface wrapper
codes for interoperability, from a specification language
called the Prototype System Description Language (PSDL)
[LUQ88]. The tool uses the principles of distributed data
structure and JavaSpace Technology to encapsulate
transaction control, synchronization, and notification
together with lifetime control to provide an environment
that treats distributed objects as if there were 1local

within the concerned applications.

ITI. REVIEW OF EXISTING WORKS:

a. ORB APPROACHES

A basic idea for enhancing interoperability is to make
the network transparent to the application developers. The
existing approaches [BER99] include 1)Building blocks for
interoperability, 2) Architectures for unified, systematic
interoperability and 3) Packaging for encapsulating
interoperability services. These approaches have been
assessed using the Kiviat graphs by Berzins [BER99] with
various weight factors. The Kiviat graphs give a good
summary of the strong and weak points of various approaches.
ORB and Jini are currently the more promising technologies
for interoperability.

There are however, some concerns with the ORB models.
Sullivan [SUL99] provides a more in-depth analysis of the
DCOM model, highlighting the architecture conflicts between
Dynamic Interface Negotiation (how a process queries a COM
services and interface) and Aggregation (component
composition mechanism). The interface negotiation does not
function properly within the aggregated boundaries. This
problem arises out of the sharing of an interface by the
components. An interface is shared if the constructor or
QueryInterface functions of several components can return a

pointer to it. QueryInterface rules state that a holder of a

shared interface should be able to obtain interfaces of all
types appearing on both the inner and outer components.
However, an aggregator can refuse to provide interfaces of
some types appearing on an inner component by hiding the
inner component. Thus, QueryInterface fails to work properly
with respect to delegation to the inner interface.

Hence, for the ORB approaches, detailed understanding
of the techniques is required to design a truly reliable
interoperable system. Programmers however, are trained
mostly on standalone programming techniques. Addition of
specialized network programming models increases the
learning as well as development time, with occasional
slippage of target deadlines. Furthermore, bugs in the
distributed programs are harder to detect and consequences
of failure are more catastrophic. An abnormal program may
cause other programs to go astray in a connected distributed

environment [LUQ88], [LUQ98].

B. PROTOTYPING

The demand for large, high quality systems has
increased to the point where a quantum change in software
technology is needed [LUQ88]. Rapid prototyping is one of
the most promising solutions to this problem. Completely
automated generation of prototype from a very high-level
language is feasible and in-fact generation of skeleton

programming structures is very common in the computer world.

One major advantage of the automatic generation of codes is
that it frees the developers from the implementation details
by executing specification via reusable components.[LUQBB].
In this perspective, an integrated software development
environment, named Computer Aided Prototyping System (CAPS)
has been developed at the Naval Postgraduate School, for
rapid prototyping of hard real-time embedded software
systems, such as missile guidance systems, space shuttle
avionics systems, and military Command, Control,
Communication and Intelligence (C3I) systems [LUQ92] . Rapid
prototyping uses rapidly constructed prototypes to help both
the developers and their customers visualize the proposed
system and assess its properties in an iterative process.
The heart of CAPS is the Prototype System Description
Language (PSDL). It serves as an executable prototyping
language at the specification or design level and has
special features for real-time system design. Building on
the success of computer aided rapid prototyping system
(caps) [LUQ92], the AICG model also uses the PSDL for the
specification and automates the generation of interface
codes with the objective of making the network transparent

from the developer’s point of view.

C. TRANSACTION HANDLING
Building a networked application is quite different

from building a stand-alone system in the sense that wmany

additional issues need to be taken care of for smooth
functioning of a networked application. The networked
systems are also susceptible to partial failures of
computation, which can leave the system in an inconsistent
state.

Proper transaction handling is essential to control and
maintain concurrency and consistency within the system. Yang
[YAN99], examined the limitation of hard-wiring concurrency
control (CC) into either the client or the server. He found
that the scalability and flexibility of these configurations
is greatly 1limited. Hence, he presented a middleware
approach: an external transaction server, which carries out
the concurrency control policies in the process of obtaining
the data. Advantages of this approach are 1) transaction
server can be easily tailored to apply the desired cCC
policies of specific client applications. 2) The approach
does not require any changes to the servers or clients in
order to support the standard transaction model. 3)
Coordination among the clients that share data but have
different CC policies is possible if all of the clients use
the same transaction server.

The AICG model uses the same approach, by deploying an
external transaction manager provided by SUN in the JINI
model [JOY99]. All transactions used by the clients and

servers are created and overseen by the manager.

III. THE BASIC MODEL

A. VJAVASPACE MODEL

JavaSpace model is a high-level coordination tool for
gluing processes tbgether in a distributed environment. It
departs from conventional distribution techniques using
message passing between processes or invoking methods on
remote objects. The technology provides a fundamentally
different programming model that views an application as a
collection of processes cooperating via the flow of freshly
copied objects into and out of one or more spaces. This
space-based model of distributed computing has its roots in
the Linda coordination Ilanguage [GEL85] developed by Dr.
David Gelernter at Yale University.

A space is a shared, network-accessible repository for
objects. Processes use the repository.as a persistent object
storage and exchange mechanism. As shown in figure 1,
processes perform simple operations to write new objects
into space, take objects from space, or read (make a copy
of) objects in a space. While taking or reading objects,
processes use a simple value-matching lookup to find the
objects that matter to them. If a matching object is not
found immediately, then a process can wait until one
arrives. Unlike conventional object stores, processes do not

modify objects in the space or invoke their methods

directly. To modify an object, a process must explicitly
remove it, update it, and reinsert it into the space. During
the period of updating, other processes requesting for the
object will wait until the process writes the object back to

the space.

Process Process

Read
(waiting)

Process
Process

Figure 1, JavaSpace operations

Key Features of JavaSpace:

¢ Spaces are persistent: Spaces provide reliable
storage for objects. Once stored in the space, an
object will remain there until a process

explicitly removes it.

10

e Spaces are transactionally secure: The Space
technology provides a transaction model that
ensures that an operation on a space is atomic.
Transactions are supported for single operations
on a single space, as well as multiple operations

over one Or more spaces.

e Spaces allow exchange of executable content: While
in the space, objects are just passive data.
However, when we read oxr take an’object from a
space, a local copy of the object is created. Like
any other local object, we can modify its public

fields as well as invoke its methods.

B. AICG MODEL

The interoperability approach underlying the AICG
model, proposes a tool for building distributed
applications. The tool is designed to generate interface
wrappers for data structures or objects ‘that need to be
shared, and are particularly useful for applications that
can model as flows of objects through one or more servers.
Build on top of JavaSpace, the AICG model hides the space
and its implementation details entirely from the
application. The interface wrapper allows applications to
treat distributed data structures or objects as local within

the application space. This enhances interoperability by

11

making the network transparent to the application
developers.

The interface wrappers are generated from an extension
of a prototype description language called Prototype System
Description Language (PSDL).

Some of the salient features of the AICG model are:

¢ Distributed objects are treated as local objects
within the application process. The application
codes need not depend on how the object 1is
distributed, since the local object copy is always
synchronous with the distributed copy. (Chapter V)

e Synchronization with various applications is
automatically handled. Since the AICG model is
based on the space transaction secure model, all
operations are atomic. Deadlock is prevented
automatically within the interface by having only
a single distributed copy, and through transaction
control. (Chapter VI, XI)

®* Any type of object can be shared as long as the
object 1is serializable. Any data structure and
object can be distributed as long as it obeys and
implements the java serializable feature (Chapter
VI, Section B-2).

® Every distributed object has a lifetime. The

distributed object lifetime is a period of time

12

guaranteed by the AICG model for storage and

distribution of the object. The time can be set by
developer. (Chapter V, Section C)

All write operations are transaction secure by
default. AICG transactions are based on the
Atomicity, Consistency, Isolation, and Durability

(ACID) properties. (Chapter V, Section D)

Clients can be informed of changes to the
distributed object through the AICG event model. A
client application can subscribe for change
notification, and when the distributed object is
modified, a separate thread is spawned to execute
the callback method defined by the developer.
(Chapter V, Section E)

The wrapper codes are generated from high-level
descriptive 1languages; hence, they are more

manageable and more maintainable.

13

THIS PAGE IS INTENTIONALLY LEFT BLANK

14

IV. DEVELOPING DISTRIBUTED APPLICATIONS WITH THE AICG TOOL

This section describes the steps for developing
distributed applications using the AICG model. An example of
a C4ISR application is introduced in section 4.1.2 to aid
the explanation of the process. The same example will be

used throughout this paper.

A. DEVELOPMENT PROCEDURES

The developer starts the development process by
defining shared objects wusing the Prototype System
Description Language (PSDL). The PSDL is processed through a
code generator (PSDLtoSpace) to produce a set of interface
wrapper codes (figure 2). The interface wrapper contains the
necessary codes for interaction between the applications and
the space without the need for the developers to be
concerned with the writing and removing of objects»in the
space. The developers can treat shared or distributed
objects as local objects, where synchronization and
distribution is automatically handled by the interface

codes.

PSDLtoSpa

PSDL: definition of the
distributed obiects

Set of Interface Wrapper Files

Figure 2, PSDL to Space

15

Define the

distributed

objects in
PSDL

Precompile
(PSDL2Space)

Client Stubs
in Java

Implement the
client

Compile

Client Class

Figure 3,

Server Stubs
in Java

Implement the
distributed
object
structure

Compile

Server Class

16

Generating the interface codes

The complete cycle for generating the interface codes

is shown in figure 3.

B. INPUT DEFINITION TO THE CODE GENERATOR

The following example demonstrates the development of
one of the many distributed objects in the C4ISR system.
Airplane positions picked up from the sensors are processed
to produce track objects. These objects are distributed over
a large network and used by several clients’ stations for
displaying the positions of planes. Each track or plane is
identified by track number. The tracks are ‘owned’ by a
group of track servers, and only the track servers can
update the track positions and its attributes. The clients
only have read access on the track data. Figure 4 shows the
PSDL codes for the track object and its methods. Figure 5
shows the PSDL codes for the Track list object and its
methods.

The PSDL grammar used for the AICG is an extended
version of the original PSDL grammar (Appendix A). PSﬁL
model is very extensive and can be used to model an entire
distributed system. However, the AICG only used a portion of
the PSDL to describe the interface between systems. In
another word, interactions between applications are defined
using the PSDL but not the application itself. Because of

this, slight modifications on the PSDL grammar were needed.

17

The complete 1listing of the changes in the grammar
statements can also be found in Appendix A.

The track PSDL starts with the definition of a type
called track. It has only one identification field
tracknumber. Of course, the track objects can have more than
one field, but only one field is in this case is used to
uniquely identify any particular track object. The type
track list shown in figure 5, on the other hand, does not
need an identification field since there is only one
track list object in the whole system. Track list is used to
keep a 1list of all the active tracks tracknumber in the
system at that moment in time.

All the operators (methods) of the type are defined
immediately after the specification. Each method has a list
of input and output parameters that define the arguments of
the method. The most important portion in the method
declaration is the implementation. The developer must be
able to define the type of operation the method is supposed
to perform. The operations are constructor (used to
initialize the class), read (no modification to any field in
the class) and write (modification is done to one or more
fields in the class). These are necessary, as the code
generated will encapsulate the synchronization of the

distributed objects.

18

Type track OPERATOR setPosition

SPECIFICATION SPECIFICATION
tracknumber: integer INPUT post : position_type
END END
OPERATOR track IMPLEMENTATION
SPECIFICATION SPACE
INPUT x:integer PROPERTY SPACEMODE = WRITE
END PROPERTY TRANSACTIONTIME =
IMPLEMENTATION 2000
SPACE END
PROPERTY SPACEMODE= END
CONSTRUCTOR
END OPERATOR getPosition
END SPECIFICATION
OUTPUT post : position_type
OPERATOR getID END
SPECIFICATION IMPLEMENTATION
OUTPUT x:integer SPACE
END , PROPERTY SPACEMODE =READ
IMPLEMENTATION
SPACE END
PROPERTY SPACEMODE=READ
END IMPLEMENTATION
END SPACE
PROPERTY SPACENAME= DODSpaces
OPERATOR setCallsign PROPERTY OWNERSHIP = YES
SPECIFICATION PROPERTY SECURITY = SERVER
INPUT sign: string PROPERTY LEASE = 12000
END : PROPERTY CLONE = MANY
IMPLEMENTATION PROPERTY NOTIFY =NO
SPACE PROPERTY RETRY =10
PROPERTY SPACEMODE= WRITE END
PROPERTY TRANSACTIONTIME =
300
END
END
OPERATOR getCallsign
SPECIFICATION
OUTPUT sign: string
END
IMPLEMENTATION
SPACE
PROPERTY SPACEMODE=READ
END
END

Figure 4, Track example in PSDL

19

IMPLEMENTATION
TYPE track list SPACE
SPECIFICATIO PROPERTY SPACENAME= DODSpaces
END PROPERTY OWNERSHIP = YES
PROPERTY SECURITY = SERVER
OPERATOR track list PROPERTY LEASE =0
SPECIFICATION PROPERTY CLONE = ONE
END PROPERTY NOTIFY = YES
IMPLEMENTATION PROPERTY RETRY =5
SPACE END
PROPERTY SPACEMODE=
CONSTRUCTOR
END TYPE position_type
END SPECIFICATION
END .
OPERATOR getID IMPLEMENTATION JAVA position java
SPECIFICATION END
INPUT index: integer
OUTPUT x:integer
END
IMPLEMENTATION
SPACE
PROPERTY SPACEMODE=READ

END
END

OPERATOR setNewID
SPECIFICATION
INPUT id: integer
END
IMPLEMENTATION
SPACE
PROPERTY SPACEMODE= WRITE
END
END

OPERATOR removelD
SPECIFICATION
INPUT id: integer
END
IMPLEMENTATION
SPACE
PROPERTY SPACEMODE= WRITE
PROPERTY TRANSACTIONTIME =
2000
END
END
END

Figure 5, Track list example PSDL

20

The other field in the implementation portion of the
method, is transactiontime. transactiontime defines the
upper limit in milliseconds within which the opération must
be completed. The transaction property is discussed in
detail in Chapter VI, Section D. Method Implementation
property fields inlcude:

SPACEMODE = CONSTRUCTOR/ : Type of operation

READ /WRITE

TRANSACTIONTIME = 999 : Upper limit of the operation
in ms.
Transaction is disabled by

setting the value to 0.

At the end of each class is the implementation section.
.This section is the class-wide attributes of the ACIG

properties. The explanation of the attributes is:

SPACENAME= DODSpaces : Which Java Space to be used

OWNERSHIP = YES/NO : Every object has at most one
owner?

SECURITY = SERVER : Only Server application can

modify the object
/Client : All application can modify

the object

21

LEASE = 9599

CLONE = ONE

NOTIFY = YES

/NO

RETRY = n

22

Object life time in ms. For

:lease that last forever, set

it to O

There is only one object of
this type

in the space at a time
There can be many object of
the this type in the space
simultaneously.
Notification of changes
allowed.

Notification of changes not
allowed.

Retry all communication
operations on the space for
n times, before raising an

exception.

C.

RUNNING THE PSDL2SPACE PROGRAM

Each distributed class in the PSDL will generate a set

of interface wrapper files after executing the PSDL2Space

program.

The command line for PSDL2Space is:

e PSDL2Space <destination dir> <data dir> <psdl file>
Figure 6 below shows the files created for executing
the command:

C:> PSDL2Space interfaceAICG aicgDir track.psdl

Track.psdl

EntryAICG, GlobalAICG, ExceptionAICG, TrackEntry,

SpaceAICG, EventAICGID, trackExt, track,
EventAICGHandler, TrackExtClient,
NotifyAICG, TransactionAICG, TrackExtServer
TransactionManager
_/ J
Y v
Fixed name files generated File name start with the object
to support the AICG model. name followed by AICG type, such

as Ext, ExtClient, ExtServer

Figure 6, AICG generated

23

Most of the generated files can be ignored except the
following:

I. Track.java: this file contains the skeleton of
the fields and the methods of the track ciass. The
user is supposed to fill the body of the methods.

ITI. TrackExtClient.java: this is the wrapper class
that the client initialized and used instead of
the track class.

III. TrackExtServer.java: this is the wrapper class
that the server initialized and used in replace
for the track class.

IV. NotifyAICG.java : this class must be extended
or implemented by the application if event-

notification and call-back are needed.

The methods found in the trackExtClient and
trackExtServer have the same method names and signatures of
the track class. In fact, the track class methods are been

called within trackExtClient or trackExtServer.

D. THE SERVER SIDE OF TRACK
Every AICG server must have a main program that
initializes the AICG environment and creates the distributed

objects. An example of a small portion of the server program

24

is given below.

Appendix B. It is noted that the once the distributed object

is instantiated,

invoked or modified.

{

tr

}
}
}

public class TrackServer implements Runnable

public void run() {

// TODO: Add initialization code here
trackExtServer trkl];

position_type pos;

// Start the transaction manager
trackExt .trackStartTxn () ;

// create array of for 10 tracks
trk = new trackExtServer[10];

= new Random{() ;

// create 10 tracks with random position
for (int i=0; i <10; i++){

// create the tracks

trk[i] = new trackExtServer(i);

// generate a ramdom number

pos = new position_type
(rd.nextInt () ,rd.nextInt ());

// set the position

trk[i] .setPosition (pos) ;

}catch (Exception e)
System.err.println("Exception") ;
e.printStackTrace() ;

Figure 6, An example of Track Server

25

The full example listing can be found in

it behaves like any local object that be

E. THE CLIENT SIDE OF TRACK WITHOUT EVENT?NOTIFICATION
ENABLED

The client program example consists of a single Java
class, TrackClient. This class provides the main method that
performs only one main task; Initialize the trackExtClient
object. Of course, the client must know the track number in
advance before it can locate the distributed object. Since
event-notification is not enabled, the client has to keep
polling on the contents of the track. Part of TrackClient is
shown below in figure 8. The full listing of TrackClient is

found in Appendix B.

public class TrackClient implements Runnable

{

public void run() {
// initialize and search for the track in the space
try{
trk = new trackExtClient [10];
//intialize the track clients
for (int i=0; i <10; i++){
trk[i]l = new trackExtClient (i) ;

// loop every 6 seconds
while (true) {
Thread.sleep(6000) ;
for (int i =0; i <10; i++){
System.out.print ("ID :" + trk[i].getID());
System.out .println(" X :" +
trk[i] .getPosition());

}

}catch (Exception e){
System.err.println("Exception") ;
e.printStackTrace() ;

}

}

Figure 8, Example of Track Client without Notification

26

.

F. THE CLIENT SIDE OF TRACK WITH EVENT-NOTIFICATION
ENABLED

The client program is the same as the one above with
the only exception is that the notification is enabled.
Hence, whenever the server changes the contents of the track

object, listenerAICGEvents method will be invoked.

public class TrackClient implements Runnable, notifyAICG

{

public void run/() {
try{
// initialize event notification
handler = new eventAICGHandler (this);
Jcatch (exceptionAICG e){

}

try{
trk = new trackExtClient[10];

// enable this track with notification for changes
trk[i] .setEvent (handler) ;

}

// listenerAICGEvent will be invoked when changes occur
public{void listenerAICGEvents (Object obj) {
try
trackExtClient trkClient = (trackExtClient) obj;
System.out.println("Notified detected");
System.out.print ("ID :" + trkClient.getID());
System.out.println("Posit” + trkClient.
getPosition()) ;
}catch (Exception e) {
System.err.println("Exception") ;

}

Figure 9, Example of Track Client with Notification

27

THIS PAGE INTENTIONALLY LEFT BLANK

28

v. CHARACTERISTICS OF AICG MODEL
A. DISTRIBUTED DATA STRUCTURE AND LOOSELY COUPLED

PROGRAMMING

Conceptually a distributed data structure is one that
can be accessed and manipulated by multiple processes at the
same time without any consideration for any machine
physically executing those proceéses. In most distributed
computing models, distributed data strucfures are hard to
achieve. Message passing and remote method invocation
systems provide a good exampie of the difficulty. Most of
the systems tend to keep data structure behind one central
manager process, and processes that want té perform work on
the data structure must “wait in line” to ask the manager
process to access or alter a piece of data on their behalf.
Attempts to parallelize or distribute a computation across
more than one machine face bottlenecks since data are
tightly coupled by the one manager process. True éoncurrent
access is rarely achievable.

Distributed data structures provide an entirely
different approach where we uncouple the data from any
particular process. Instead of hiding data structure behind
a manager process, we represent data structures as

collections of objects that can be independently and

29

concurrently accessed and altered by remote processes.
Distributed data structures allow processes to work on the
data without having to wait in 1line if there are no
serialization issues.

The distributed protocol for modification ensures
synchronization by enforcing that a process wishing to
modify the object has to physically remove it from the
space, alter it and write it back to the space. There can be
no way for more than one process to modify an object at the
same time. However, this does not prevent other processes
from overwriting the corrected data. For example, in the
normal JavaSpace, process A instead of performing a “take”
follow by a “write operation, the programmer wrote a “read”
operation, followed by a “write” operation. This results in
2 copies of the object in the Space. The AICG model prevents
this by encapsulating the 3 basic commands from the
developers. All modification on the object are automatically
translated to “take”, followed by “write” and all operations
that access the fields of the distributed object are
translated to “read”. These ensure that local data are up-

to-date and serialization is maintained (figure 10).

30

Creating a Distributed Object

Process
A

Ne

N
O

AIGC
Inter
face

Reading a field of a distributed object

Process

A

getField

Updating a distributed object

Process

A

setField

AIGC
Interf
ace

\\\—-—_

\Q:iii/ <:>I@cal Object

<:>Iﬁstributed Object

Figure 10, Interaction between Space through

AICG Interface

31

Loosely-coupled programming also has its own
limitations. Distributéd objects may be lost if a process
removes it from the space and subsequently crashes or is cut
off from the network. Similarly, the system may enter a
deadlock state if processes request more than one
distributed object while, at the same time, holding on to
distributed objects required by other processes. In cases
like this, the AICG model groups multiple operations into a
transaction to ensure that either all operations are
completed or none occurs, thereby maintaining the integrity
of the application. Hence, deadlock is prevented through
transaction control. The application can retry the operation
immediately or wait for a random time before performing the

operation again.

B. SYNCHRONIZATION

Synchronization plays a crucial role in any design of
distributed application. Inevitably, processes in a
distributed system need to coordinate with one another and
avoid bringing the system into an unstable state such as
deadlock. Creating distributed applications with AICG can
significantly ease the burden of process synchronization
since synchronization is already built into the AICG

operations. Multiple processes can read an object in a space

32

at any time, but when a process wants to updaté an object,
it has to remove it from the space and thereby gain
exclusive access to it first. Hence, coordinated access to
objects is enforced by the AICG interface doing read, take
and write operations.

More advanced and complex synchronization schemes can
be easily build upon from the basic atomic features of the
AIGC operations. An example 1is semaphores. Semaphores, a
synchronization construct that was first wused to solve
concurrency problems in operating .systems, are commonly
found in multithreaded programming languages, but are more
difficult to achieve in distributed systems. Semaphores are
typically implemented as integer counters that require
special language or hardware support to ensure the atomic
properties of the UP (signal) and DOWN (wait) operations.
Using AIGC space model, we could easily implement a
semaphore as a shared variable that holds an integer
counter. By assigning a distributed variable or object as a
semaphore, groups of distributed objects can be
synchronized. Hence, the AIGC model permits the developers
to develop more éomplicated distributed applications without
being concerned about synchronization and deadlock.
Furthermore, all operations within the AICG model can impose

transaction control with timeout monitoring. After the

33

timeout period, the transaction would rollback the

application to a stable state.

c. OBJECT LIFE TIME (LEASES/TIMEOUT)

Leasing provides a methodology for controlling the life
span of the distributed objects in the AICG space. This
allows resources to be freed after a fixed period. This
model is beneficial in the distributed environment, where
partial failure can cause holders of resources to fail
thereby disconnecting them from the resources before.they
can explicitly free them. In the absence of a leasing model,
resources could grow without bound.

There are other constructive ways to harness the
benefit of the leasing modellbesides using it as a garbage
collector. As for example, in a real-time system, the value
of the information regarding some distributed objects
becomes useless after certain deadlines. Accessing obsolete
information can be more damaging in this case. By setting
the lease on the distributed object, the AICG model
automatically removes the object once the lease expires or
the deadline is reached.

JavaSpaces allocate resources that are tied to leases.
When a distributed object is written into a space, it is

granted a lease that specifies a period for which the space

34

guarantees its storage. The holder of the lease may renew or

cancel the lease before it expires. If the leaseholder does

neither, the lease simply expires, and the space removes the

entry from its store.

The AICG model simplified the JavaSpace lease model

into two configurations. These are:

I.

I1T.

Generally, the distributed object lasts forever
as long as the space exists, even if the
leaseholder (the process that creates the object)
has died. This configuration is ehabled by setting
the SPACE lease property in the Implementation to
0.

In the real-time environment, the distributed
object lasts for a fixed duration of x ms
specified by the object designer. To keep the
object alive, a write operation must be performed
on the object before the lease expires. This
configuration 1is .set through the SPACE lease
property in the Implementation to the time in ms

required.

Hence, the developer must provide due consideration

towards leasing while developing the application. If an

object has a lifetime, it must be renewed before it expires.

In the AICG model, renewal is done by calling any method

35

that modifies the object. If no modification is required,
the developer can consider defining a dummy method with the
spacemode set to “write”. Invoking that method will

automatically renew the lease.

D. TRANSACTIONS
The AICG model uses the Jini Transaction model, which
provides generic services concerning transaction processing

in distributed computing environment.

1. Jini Transaction Model

All transactions are overseen by a transaction manager.
When a distributed application needs operations to occur in
a transaction secure manner, the process asks the
transaction manager to <create a transaction. Once a
transaction has been created, one or more processes can
perform operations under the transaction. A transaction can
complete in two ways. If a transaction commits successfully,
then all operations performed wunder it are complete.
However, if problems arise, then the transaction is aborted
and none of the opérations occurs. These semantics are
provided by a two-phase commit protocol that is performed by
the transaction manager as it interacts with the transaction

participants.

36

2. AICG Transaction Model

AICG model encapsulates and manages the transaction
procedures. All operations on the distributed object can be
either with transaction control or without. Transaction
control operations are controlled with a default lease of 2
seconds. This default value of leasing time may, however, be
changed by the user. The transaction lease is kept by the
transaction manager as part of the leased resource, and when
the lease expires before the operation being committed, the
transaction manager aborts the transaction.

The AICG model by default, enables all transaction for
write operations and the transaction lease time is two
seconds. The developer can modify the lease time through ﬁhe

PSDL SPACE transactiontime property.

PROPERTY transactiontime = 0 : Disable transaction for
that method
/n : Set the lease time to n

milliseconds.

No read operations in the AICG model have the
transaction enable. However, the user can enable it by using
the property transactiontime with the wupper 1limit in

transaction time for the read operation.

37

E. AICG EVENT NOTIFICATION

In the distributed and loosely-coupled programming
environment, it is desirable for an application to react to
changes or arrival of newly distributed objects instead of
“busy waiting” for it through polling. AICG provides this
feature by introducing a callback mechanism that invokes
user-defined methods when certain conditions are met.

Java provides a simple but powerful event model based
on event sources, event listeners and event objects. An
event source is any object that “fires” an event, usually
based on some internal state change in the object. In this
case, writing an object into space would generate an event.
An event listener is an object that listens for events fired
by an event source. Typically, an event source provides a
method whereby listeners can request to be added to a list
of listeners. Whenever an event source fires an event, it
notifies each of its registered listeners by calling a
method on the Ilistener object and passing it an event
object.

Within a Java Virtual machine (JVM), an application is
guaranteed not to miss an event fired from within.
Distributed events on the other hand, had to travel either,
from one JVM to another JVM within a machine or between

machines networked together. Events traveling from one JVM

38

to another may be lost in transit, or may never reach their

event listener. Likewise, an event may reach its listener
more than once.

Space-based distribufed events are built on top of the
Jini Distributed Event model, and the AICG event model
further extends it. When using the AICG event model, the
space is an event source that fires events when entries are
written into the space matching a certain template an .
application is interested in. When the event fires, the
space sends a remote event object to the listener. The event
listener codes are found in one of the generated AICG
interface wrapper files. Upon receiving an event, ‘the
listener would spawn a new thread to process the event and
invoke the application callback method. This allows the
application codes to be executed without involving the
developer in the process of event -management.

There are a few steps for setting up AICG event for a
particular application. Firstly, the distributed objects
must have the SPACE properties for Notification set to yes.
One of the application classes must implement (java term for
inherit) the notifyAICG abstract class. The notifyAICG class
has only one method, which is the callback method. The user
class must override this method with the codes that need to

be executed when an event fires. More details on the

39

implementation of the notifyAICGHandler have been included

in the next chapter.

40

F_____________________—————————————————————————————————————__________ﬁggfh

VI. AICG DESIGN

This section explains the design of the AICG and the
codes that are generated from psdl2java program. The
interface wrapper codes examples used in this section are

generated from the track PSDL of figure 4.

A. AICG ARCHITECTURE

The AICG architecture consists of four main modules:
Interface modules, Event modules, Transaction modules and
the Exception module. The interface modules implement the
distributed object methods and communicate directly with the
application. In reference to the example, the interface
modules for the track.psdl are entryAICG, track, trackEXt,
trackExtClient, trackExtServer. Instead of creating the
actual object (track), the application should instantiate
the interface class either the trackExtClient or
trackExtServer. Event modules (eventAICGID, evenAICGHandler,
notifyAICG) handle external events generated from the
JavaSpace that are of interest to the application.
Transaction modules (transactionAICG,
transactionManagerAICG) support the interface module with
transaction services. Lastly, the exception module

(exceptionAICG) defines the possible types of exceptions

41

that can be raised and need to be handled by the
application. Figure 11 shows the architecture of the
generated interface wrapper and the interaction with the

other modules and the application.

A
p
P
L
I
C
A
T
I
C
N
trackServerE
” getID
getCallsign
setCallsign
getPosition
setPosition

Figure 11, Architecture of the generated interface
wrapper and the interaction with the other modules and
application

42

e

Each time the application instantiate a track class by

creating a new trackExtServer, the following events take

place in the Interface:

1.

1.

An Entry object is created together with the track
object by the trackExtServer. The tack object is
placed into the Entry object and stored in the

space.

. Transaction Manager is enabled.

. The reference pointer to trackExtServer is

returned to the application.

Each time a method (getlID, getCallsign, getPosition)
that does not modify the contents of the object is invoked,

the following events take place in the Interface:

When the application invokes the method through

the Interface (trackExtServer/trackiExtClient).

. The Interface performs a Space “get” operation to

update the local copy.

. The method is then executed on the updated copy of

the object to return the value back to the

application.

43

Each time a method (setCallsign, setPosition), which
does modify the contehts of the object is invoked, the
following events take place in the Interface:

1. The Application invokes the method through the
Interface.

2. The interface performs a Space “take” operation,
which retrieves the object from the space.

3. The actual object method is then invoked to
perform the modification.

4. Upon completion of the modification, the object is
returned to the space by the interface using a

“write” operation.

B. INTERFACE MODULES

The interface modules consist of the following modules;
an entry (entryAICG) that are stored in space, the actual
object (track) that are shared and the object wrapper
(trackExt, trackExtClient, trackExtServe) .

1. Entry

A space stores entries. An entry is a collection of
typed objects that implements the Entry interface. The base

class of the AICG distributed object is shown in figure 11.

44

-

public abstract class entryAICG implements Entry

{

// main identifcation number
public Integer entrylD;

// required by JavaSpace default constructor
public entryAICG() {

public entryAICG(int id) {
entryID = new Integer (id);

// return the object stored in the entry
public abstract Object getObject();

Figure 12, An example of entryAICG class

The Entry interface is empty; it has no methods that
have to be implemented. Empty interfaces are often referred
to aé “marker” interfaces because they are used to mark a
class as suitable for some role. That is exactly what the
Entry interface is used for, to mark a class appropriate for
use within a space.

All entries in the AICG extend from this base class. It
has one main public attribute, an identifier and an abstract
method that returns the object. Any type of object can be
stored in the entry. The only limitation is that the object
must be serializable. Serializability allows the java
virtual machine to pass the entire object by wvalue instead
of by reference. Here 1is an example “track” entry codes

generated by the AICG from the PSDL file in figure 4. The

45

interface contains the object track in one of the field and

an ID.

public abstract class trackEntry extends entryAICG

{
// ID is required if there are more than one similar object in
// the space
public Integer aicglIDl;

// track object
public track data;

// default Constructor
public trackEntry(){ }

// Constructor with information extracted from the track PSDL
// file.

public trackEntry(int aid, Integer aicgID1l, track inData) {
super (aid) ;

data = inData;

this.aicgIDl = aicgIDi;

public Object getObject () {
return data;

Figure 13, An example of Entry class

All Entry attributes are declared as publicly
accessible. Although it is not typical of fields to be
defined in public in object-oriented programming style, the
associative _lookup is the way the space-based programs
locate entries in the space. To locate an object in space, a
template is specified that matches the contents of the
fields. By declaring entry fields publiec, it allows the

space to compare and locate the object. AICG encourage

46

object-oriented programming style by encapsulating the
actual data object into the entry. The object attributes can
then be declared as private and made accessible only through
clearly defined public methods of the object.

2. Serialization

Each distributed interface object is a local object
that acts as a proxy to the remote space object. It is not a
reference to a‘remote object but instead a connection passes
all operations and value through the proxy to the remote
space. All the objects must be serializable in order to meet
this objective. The Serializable interface 1is “marker”
interface that contains no methods and serves only to mark a
class as appropriate for serialization. The Serializable
interface is shown in figure 14 together with the example of

track class implementing the interface.

public abstract interface Serializable {
// this interface is empty

// Bn example of the track class implementing the interface
//Serializable

public class track implements Serializable {

// since Serializable is a marker interface
// no methods need to be override.

Figure 14, Serializable interface class

47

‘

3. The Actual Distributed Object

We now look at the actual objects that are shared
between the servers and clients. The PSDL2Space generates a
skeleton version of the actual class with the methods names
and its arguments. The body of the methods and its fields
need to be filled by the developers. The track class
generated is shown in figure 15. The track class with the

body and fields added is listed in Appendix B.

public class track implements java.io.Serializable

{

private Integer trackNumber;

public track(int inID) {
// insert the body here

public int getID() {
// insert the body here

public void setPosition(position_type post) {
// insert the body here

public position_type getPosition() {
// insert the body here

public String getCallsign() {
// insert the body here

}

public void setCallsign(String sign) {
// insert the body here

// automatically generated do not delete!!
public Integer autoGetID1 () {
return trackNumber ;

}
}

Figure 15, An example of a distributed class generated by
PSDL2Space

48

4. Object Wrapper

Wrapping is an approach to protecting legacy software
systems and commercial off-the-shelf (COTS) software
products that reguire no modificatioh of those products
[BER99]. It consists of two parts, an adapter that provides
some additional functionality for an application program at
key external interfaces, and an encapsulation mechanism that
binds the adapter to the application and protects the
combined components [BER99].

In this context, the software being protected contains
the actual distributed objects, and the AICG model has no
way of knowing the behaviors of the distributed object other
than the type of operations of the methods. The adapter
intercepts all invocations to provide additional
functionalities such as synchronization between the local
and distributed object, transaction control, events
monitoring and -exceptions handling. The encapsulation
mechanism has been explained in the earlier section (AICG
Architecture). Instead of instantiation of the actual
object, the respective interface wrapper is instantiated.
Instantiating the interface wrapper would indirectly
instantiate the actual object as well as storing the object

in the space.

49

Three classes are generated for every distributed
object. These are named with the object name appended with
the following Ext, ExtClient, and ExtServer. The class

hierarchy of the example is shown in figure 16.

Base Class

trackExt

trackExtClient ‘ltrackExtServer

Client Class Server Class

Figure 16, Wrapper Hierarchy

The trackExtClient class is initialized by applications
that have only read access on the distributed object.
Whereas, the trackExtServer «class 1is initialized by
applications that have both the read and write access on the
distributed object. The listing of the three files are found

in Appendix B.

50

C; EVENT MODULES

The event modules consist of the event callback
template (notifyAICG), the event handler (evenAICGHandler)
and the event identification object (eventAICGID).

1. Event Identification Class

The event identification class is used to distinguish
one event from others. When an event of interest 1is
registered, an event identification object is created by
storing the identification and the event source. Together
these two properties act to uniquely identify the event
registration.

fhe class has only two methods, an ‘equals’ method that
check if two event identification objects are the same and a
‘to string’ method which is used by the event handler for
searching the right event objects from the hash table. The
listing of the event identification.class can be found in
Appendix B.

2. Event Handler

Event Handler is the main body of the event operations
in the AICG model. It handles registration of new events,
deletion of old events, listening for event and invoking the
right callback for that event. In féct, the event handler
consists of three inner classes to perform the above

functions. Events are stored in a hash table with the event

51

identification object as the key to the hash table. This
allows fast retriever of the event object and the respective
callback methods.

The event handler listens for new events from the space
or other sources. When an object is written to the space, an
event is created by the space and captured by all the
listeners. The event handler would immediately spawn a new
thread and check whether the event is of interest to the
application. Figure 17 shows the portion of the event
handler that are executed when an event is received, the

full listing of the module is found in Appendix B.

// call when an external event is “fired”.
public void run() {
// get the event id and source
Object source = event.getSource();
long id = event.getID();
long segN = event.getSequenceNumber () ;
// create a new event identifcation object
eventAICGID keyID= new eventAICGID(id, source) ;
registerAICG tempReg;
// create a key from the id and event source
String key = new String(keyID.toString());
// check if the key exist in the hash table (storage)
if ((tempReg = (registerAICG) storage.get (key)) !=null)

// check if the event is an old or duplicate event
if (segN > tempReg.segNum) {
tempReg.segNum = seqN;
src.listenerAICGEvents (tempReg.anyObj) ;
} else {
// old events ignored
return;

}

}// end of notifyHandler
}// end of class

Figure 17, Event Handler

52

3. The Callback Template

The callback template is a simple interface class with
an abstract method listenerAICGEvents. Its main function is
to allow the AICG model to invoke the application program
when certain events of interest are “fired”. As explained
in section V.E, the template need to be implemented by the
application that wishes to have notification. The interface
abstract method need to be override by the application for

the callback to work.

public interface notifyAICG

// abstract method, to be override by the application
// with the codes that are to execute when the event fired
public abstract void listenerAICGEvents (Object obj);

Figure 18, notifyAICG interface

D. THE TRANSACTION MODULES

The transaction modules consist of transaction
interface (transactionAICG) and the transaction factory
(transactionManagerAICG) .

The transaction interface class comprise of a group of
static methods that are used for obtaining reference to the

transaction manager server anywhere on the network. It uses

53

the Java RMI registry or the look-up server to locate the

transaction server.

The transaction factory uses the transaction interface

to obtain the reference to the server, which is then used to

create the default transaction or user-defined transaction.

In short,

1.

the transaction factory performs the following:
Invoke the transaction interface to obtain a

transaction manager.

. Create default transaction with lease time of 5‘

seconds.

. Create transactions with user define lease time.

E. THE EXCEPTION MODULE

The exception module defines all the exception codes

‘that are returned to the application when certain unexpected

conditions occur in the AICG model. The exception include:

"NotDefinedExceptionCode"; unknown error occur.

"SystemExceptionCode"; system level exceptions,

such disk failure; network failure.

"ObjectNotFoundException"; the space does not

contain the object.

"TransactionException"; transaction server not

found, transaction expire before commit.

54

e "LeaseExpireException"; object lease has expired.

e "CommunicationException"; space communication
errors.

e '"UnusableObjectException"; object corrupted.

e "ObjectExistException"; there another object with
the same key in the space.

e "NotificationException"; events notification

errors.

55

THIS PAGE INTENTIONALLY LEFT BLANK

56

VII. CONCLUSIONS AND RECOMMENDATION

a. CONCLUSIONS

This thesis demonstrates the ease of sharing
distributed objects and automates the generation of generic
interface wrappers directly from the Prototype System
Description Languages. However, the design has a performance
price penalty. Every read operation requires the interface
to synchronize the local object with the distributed object
before the value is returned. Every write operation requires
two Space operations. Adding the overhead for transactions,
event monitoring and control, reading operations are in the
range of a hundred milliseconds aﬁd writing is in the range
of a few hundred of milliseconds. The high overhead lies
within the Java Virtual Machine (JVM), the JavaSpace Model
and the network latency. Current versions of JVM and
JavaSpace are in a premature state in terms of performance.
Even so, the performances are still suitable for most
applications that ére not time critical. Similar
implementations of distributed systems with the above
features of AICG interface in CORBA and Java would not
perform any better.

Performance is not the main concern regarding whether

the AICG interface model 1is suitable for developing

57

interoperability between real-time applications, but
predictability of the time and space of the operations are.
Currently, the Java language lacks some important real-time

programming features such as:
1. Language features for capturing common idioms for
periodic activity and asynchronous event handling.
2. Predictability of time and space. The language
must enable prediction of the worst-case execution
time for language constructs, to avoid “priority
inversion” and it should not run out of storage or

fragment.

In the near future, if the JVM and the Java language
embrace the Real-Time standards currently in final draft, it
éhoﬁld be able to bridge the gap regarding requirements for

real-time systems.

B. RECOMMENDATIONS

The AICG model is now still in the premature stages to
be a useful developer tool. More features and developments
are needed before the model becomes indispensable for
developing distributed applications. The following sections
describe some of the features that would enhance the

usefulness of the AICG model.

58

1. Graphical User Interface (GUI):

A user-friendly Graphical Interface would allow users
to develop applications using graphical objects to represent
the interfaces and the distributed objects. The graphical
editor would allow the developer to include operators, input
and output similar to those of the CAPS system. An expert
system would then provide the capability to generate the
PSDL specifications for the graphical objects. This should

speed up developments that use the AICG model.

2. Integration With The CAPS System

AICG model’s primary objective is to allow developer to
improve their productivity in developing reliable
distributed systems by simplifying the interoperability
between them.

The current version of CAPS, on the other hand, allows
developers to design and build reliable end-systems.
Integration of the AICG model with CAPS would complement
each other, resulting in a total solution for developing

truly distributed systems.

59

THIS PAGE INTENTIONALLY LEFT BLANK

60

APPENDIX A. PSDL GRAMMAR
psdl = {component}

component = data_type
| operator

data _type = "type" id type_spec type_impl

type spec = "specification" ["generic" type_decl]
[type_decl]
{"operator" id operator_spec}
[functionality] "end"

operator = "operator" id operator_spec operator_impl

operator_spec = "specification” {interface}
[functionality] "end"

interface = attribute [regmts_trace]

attribute = "generic" type_ decl
"input" type_ decl
"output" type_decl
"states" type_decl "initially"

initial expression_list

10.

11.

12.

13.

14.

15.

16.

"exceptions" id_list
"maximum execution time" time

type decl = id_list ":" type_name {"," id_list ":"
type name}

type name = id | id "[" type_decl "]"

id list = id {v," id}

regqmts_trace = "by requirements" id_list

functionality = [keywords] [informal_descl [formal_desc]
keywords = "keywords" id_list

informal desc = "description" "{" text "}

formal desc = "axioms" "{" text "}"

61

17. type_impl = "implementation ada" id "end"
| "implementation" type name {"operator" id
operator_impl} "end"

18. operator impl = "implementation ada" id "end"
| "implementation" psdl impl "end"

19. psdl_impl = data_flow_diagram [streams] [timers]
[control constraints]
[informal desc]

20. data_flow_diagram = "graph" {vertex} {edge}

21. vertex = "vertex" op_id [":" time]
-- time is the maximum execution time

22. edge = "edge" id [":" time] op_id "->" op_id
-- time is the latency

23. op_id = id ["(" [id_list] "|" [id list] ") "]

24. streams = "data stream" type decl

25. timers = "timer" id_list

26. control_ constraints = "control constraints" constraint

{constraint}

27. constraint = "operator" op_id
["triggered™" [trigger] ["ifm expression]
[regmts_trace]l]
["period" time [regmts tracel]
["finish within" time [regmts_ trace]]
["minimum calling period" time [regqmts_trace]]
["maximum response time" time [regmts_trace]]
{constraint_options}

28. constraint_options = "output" id list "if" expression
[regmts_trace]

| "exception™ id [nifm expression]
[regmts trace]

| timer op id ["ifnm expression]
[regmts_trace]
29. trigger = "by all" id list

| "by some" id_list

62

30. timer_op = "reset timer"
| "start timer"
| "stop timer"

31. initial expression_list = initial_expression {","

initial expression}

32. initial expression = "true" | "false"
integer literal | real_ literal
string literal | id
type name non id

initial_expression_liéE ")"l v
"(" initial expression ")"

[u (n

initial expression binary op
initial expression
| unary op initial_expression
33. binary op = "and" | "or" | "xor"
T "t l non l n_n l "t I Nen | u/___n
l nyn I w_mn I ngn I Wk n I n/n | "mod™" | "rem"
Mkxn
34. unary op = tnot " I nabg" l n_mn I nyn
35. time = integer literal unit
36. unit = "microsec" | "ms"
I ngac? ’ "min" I "hours"
37. expression list = expression {"," expression}
38. expression = "true" | "false"
integer_literal
time
real_literal
string literal
id
type name "." id ["(" initial_expression_list

|I) "]

"(" expression ")"

unary op initial_expression
39. id = letter {alpha numeric}

40. real literal = integer "." integer

63

initial expression binary op initial_expression

41. integer_literal = digit {digit}

42. string literal = """ {char} n"n"n

43. char = any printable character except mim
44. digit = "o .. ov

45. letter = "a .. z" | "A .. zv | v v

46. alpha numberic = letter | digit

47. text = {char}

EXTENSION TO PSDL FOR AICG MODEL

Changes:
17. type_impl = "implementation ada" id "end"
| "implementation" type_ name {"operator" id
operator_impl} "end"
| “implemetation space” <space impl>
18 <operator_impl> ::= implementation <id> <id> end
| implementation <psdl impls end
| implementation <class impl> end
Additional:

51. <space_impl> ::= space {<property>} end

64

APPENDIX B. EXAMPLES OF GENERATED INTERFACE WRAPPER

ENTRYAICG.JAVA

// Filename : entryAICG.java
// Version : 0.1

// Compiler : jdk 1.2 or J++
// Generated: auto

// Date : 01/07/00

* Class autoCodeException

@author Cheng Heng Ngom
@version 0.1

Description ‘
Basic components of the java space object. All distributed objects
implements the entryAICG.

package interfaceAICG;

import net.jini.core.entry.Entry;

public abstract class entryAICG implements Entry

// main identifcation number
public Integer entryID;

// require by JavaSpace default constructor
public entryAICG() {

}

public entryAICG(int id) {
entryID = new Integer(id);

// return the object stored in the entry
public abstract Object getObject();

65

TRACK.JAVA

f) = m e e e e e e
// Filename : track.java
// Version : 0.1

// Compiler : jdk 1.2 or J++
// Generated: auto
// Date : 01/07/00

[= e

/**

*

* @author Cheng Heng Ngom

* @version 0.1

*

* Description

* Distributed Object, each object is distinguish by a unique
* tracknumber.

*/

package interfaceAICG;

public class track implements java.io.Serializable

{

private Integer tracknumber;
private String callsign;
private position_type position;

public track(int x) {
tracknumber = new Integer(x);
callsign =new String() ;
position = new position_type(0,0);

public int getID() {
return tracknumber.intValue() ;

}

public void setCallsign(String si) {
callsign = new String(si);

}

public String getCallsign() ({
return callsign;

}

public void setPosition(position_type post) ({
position.x post.x;
position.y = post.y;

}

public position_type getPosition() {
return position;

won

66

// automatically generated do not delete!!
public synchronized Integer getaicglID1 ()

return tracknumber;

}
}

TRACKENTRY . JAVA
ettt el bbb bbb el bty
// Filename : trackEntry.java
// Version : 0.1

// Compiler : jdk 1.2 or J++
// Generated: auto
// Date : 01/07/00

* @author Cheng Heng Ngom

* @version 0.1
*

* Description
*

*/
package interfaceAICG;

public class trackEntry extends entrxryAICG

{

public Integer aicglDl;

public track data;

public trackEntry () {}

public trackEntry(int aid, Integer aicgID1l, track inData) {
super (aid) ;

data = inData;
this.aicgIDl = aicgIDl;

}

public Object getObject () {
return data;
}

67

TRACKEXT .JAVA

Rt er T T LT T T ———
// Filename : trackExt.java
// Version : 0.1

// Compiler : jdk 1.2 or J++

// Generated: auto

// Date : 01/07/00

J] = e e e e

/**

*

* @author Cheng Heng Ngom
* @version 0.1

*

* Description
*
*/
package interfaceAlICG;

import net.jini.core.lease.Lease;
import net.jini.space.JavaSpace;
import net.jini.core.event.*;

public class trackExt implements java.io.Serializable

protected JavaSpace space;

protected static transactionManagerAICG trnMgr;
protected eventAICGID notifyID;

protected eventAICGHandler evHandler;

protected boolean handlerEvent;

protected trackEntry distObj;

// user ids

protected Integer aicgIDl;

/**
* Constructor, with notification disable
*
/ .
public trackExt ()
throws exceptionAICG
evHandler = null;
handlerEvent = false;
space = spaceAICG.getSpace(globalAICG.AICGSPACENAME) ;
// set the ids to null
aicgID1l = null;

// if there are n ids there will be n setID
public synchronized void setaicgID1(Integer inID)

aicgIDl = inID;

68

// n set of get ids
public synchronized Integer getaicgID1 ()

return aicglDl;

}

//always present xxxStratTxn
public static void trackStartTxn()throws exceptionAICG{

trnMgr = new transactionManagerAICG();
}
}
TRACKEXTCLIENT .JAVA
[] = oo
// Filename : trackExtClient.java
// Version : 0.1

// Compiler : jdk 1.2 or J++
// Generated: auto
// Date : 01/07/00

@author Cheng Heng Ngom
@version 0.1

Description

package interfaceAICG;

import net.jini.core.lease.Lease;
import net.jini.space.JavaSpace;

import net.jini.core.transaction.*;
import net.jini.core.transaction.server.*;

public class trackExtClient extends trackExt

// client constructor
public trackExtClient (Integer aicgID1l) throws exceptionAICG{
super () ;
int retry = globalAICG.AICGDEFAULTRETRY;
boolean trxSucc =false;
Integer tempaicgIDl = aicgIDl ;
while (retry !=0){
try{
// create atemplate to seach for the object
trackEntry template = new
trackEntry (globalAICG.AICGIDENTIFIER , tempaicgIDl, null);

69

distObj = (trackEntry) space.read(template,null,
globalAICG.AICGDEFAULTWAITTIME) ;

track ddata = (track) distObj.getObject () ;
setaicgIDl (ddata.getaicgIDl1());
retry = 0;

trxSucc = true;

}catch (Exception e){
System.err.println("retrying to find object");
retry--;

}
}// end of while
if (!trxSucc)

throw new exceptionAICG (exceptionAICG.ObjectNotFoundException) ;
}

}

// event notification setting
public void setEvent (eventAICGHandler inEv) throws exceptionAICG
{

evHandler = inEv;

notifyID = evHandler.trackAddNotify(this);

// readonly methods
public int getID() throws exceptionAICG {
trackEntry msgTemplate = new trackEntry(globalAICG.AICGIDENTIFIER,
aicgIDl, null);

try{ _
distObj = (trackEntry)
space.read (msgTemplate, null,
globalAICG.AICGDEFAULTWAITTIME) ;
if (distObj==null) {
// object nolonger exist
throw new
exceptionAICG (exceptionAICG.ObjectNotFoundException) ;

return distObj.data.getID();
}catch (exceptionAICG ex) {
throw new exceptionAICG (exceptionAICG.ObjectNotFoundException) ;
}catch (Exception e) {
throw new exceptionAICG(exceptionAICG.SystemExceptionCode) ;

}

public String getCallsign(.) throws exceptionAICG ({
trackEntry msgTemplate = new trackEntry(globalAICG.AICGIDENTIFIER,
aicgIiDl1l, null);

try{
distObj = (trackEntry)
space.read (msgTemplate, null,
globalAICG.AICGDEFAULTWAITTIME) ;
if (distObj==null) {
// object nolonger exist

70

throw new
exceptionAICG (exceptionAICG.ObjectNotFoundException) ;

return distObj.data.getCallsign();
}catch (exceptionAICG ex) {

throw new exceptionAICG (exceptionAICG.ObjectNotFoundException) ;
}Jcatch (Exception e) {
} throw new exceptionAICG (exceptionAICG.SystemExceptionCode) ;

}

public position_type getPosition() throws exceptionAICG {
trackEntry msgTemplate = new trackEntry(globalAICG.AICGIDENTIFIER,
aicgIiD1l, null);

try{
distObj = (trackEntry)

space.read (msgTemplate, null,
globalAICG.AICGDEFAULTWAITTIME) ;
if (distObj==null) {
// object nolonger exist
throw new
exceptionAICG (exceptionAICG.ObjectNotFoundException) ;

return distObj.data.getPosition();
}catch (exceptionAICG ex) {
throw new exceptionAICG (exceptionAICG.ObjectNotFoundException) ;
}catch (Exception e) ({
throw new exceptionAICG (exceptionAICG.SystemExceptionCode) ;

}
}
TRACKEXTSERVER.JAVA
f] = e e
// Filename : trackExtServer.java
// Version : 0.1

// Compiler : jdk 1.2 or J++
// Generated: auto
// Date : 01/07/00

* @author Cheng Heng Ngom
* @version 0.1
*

* Description
*
*/
package interfaceAICG;

import net.jini.core.lease.Lease;

import net.jini.space.JavaSpace;

import net.jini.core.transaction.*;

import net.jini.core.transaction.server.*;

71

public class trackExtServer extends trackExt
{
// constructor
public trackExtServer(int x) throws exceptionAICG{
super () ; .
// create the template
Transaction trn = null;

try {
trn = trnMgr.getDefaultTransaction() ;

try{
track ddata = new track(x);
setaicgID1 (ddata.getaicgID1());
trackEntry template = new
trackEntry(globalAICG.AICGIDENTIFIER, aicgID1l, null);
//check if the distobj exit
if (space.read(template, trn, JavaSpace.NO_WAIT) == null) {
distObj = new trackEntry(globalAICG.AICGIDENTIFIER,
aicgIDl, ddata);
space.write (distObj, trn, globalAICG AICGLEASETIME) ;
trn.commit () ;
}else({
// throws an exception
trn.abort () ;
throw new
exceptionAICG (exceptionAICG.ObjectExistException) ;

}catch (exceptionAICG e) {
trn.abort () ;
throw new exceptionAICG(e.getErrorCode());
}catch (Exception e) {
trn.abort();
e.printStackTrace () ;
throw new exceptionAICG (exceptionAICG.SystemExceptionCode) ;

}catch (exceptionAICG e) {
throw new exceptionAICG(e.getErrorCode());
}catch (Exception e) {
throw new exceptlonAICG(exceptlonAICG SystemExceptionCode) ;

// event notification setting
public void setEvent (eventAICGHandler inEv)

evHandler = inEv;

// others methods
public int getID() throws exceptionAICG {
trackEntry msgTemplate = new trackEntry(globalAICG.AICGIDENTIFIER,

aicgID1l, null);

try{
distObj = (trackEntry)

72

space.read (msgTemplate, null,
globalAICG.AICGDEFAULTWAITTIME) ;
if (distObj==null)
// object nolonger exist
throw new
exceptionAICG (exceptionAICG.ObjectNotFoundException) ;

return distObj.data.getID();
}catch (exceptionAICG ex) {
throw new exceptionAICG (exceptionAICG.ObjectNotFoundException) ;
}catch (Exception e)
throw new exceptionAICG (exceptionAICG.SystemExceptionCode) ;
}

}

public String getCallsign() throws exceptionAICG {
trackEntry msgTemplate = new trackEntry(globalAICG.AICGIDENTIFIER,

aicgID1l, null);

try{
distObj = (trackEntry)
space.read (msgTemplate, null,
globalAICG.AICGDEFAULTWAITTIME) ;
if (distObj==null) {
// object nolonger exist
throw new
exceptionAICG (exceptionAICG.ObjectNotFoundException) ;

return distObj.data.getCallsign();
}Jcatch (exceptionAICG ex) {
throw new exceptionAICG (exceptionAICG.ObjectNotFoundException);

}Jcatch (Exception e)
throw new exceptionAICG (exceptionAICG.SystemExceptionCode) ;
}

}

public position type getPosition() throws exceptionAICG {
trackEntry msgTemplate = new trackEntry(globalAICG.AICGIDENTIFIER,
aicgIDl, null);

try{
distObj = (trackEntry)
space.read (msgTemplate, null,
globalAICG.AICGDEFAULTWAITTIME) ;
if (distObj==null)
// object nolonger exist
throw new
exceptionAICG (exceptionAICG.ObjectNotFoundException) ;

return distObj.data.getPosition();
}catch (exceptionAICG ex) {
throw new exceptionAICG(exceptionAICG.ObjectNotFoundException);

}catch (Exception e) {
throw new exceptionAICG (exceptionAICG.SystemExceptionCode) ;
}

}

73

{

public void setPosition(position_type post) throws exceptionAICG

public void setCallsign(String si) throws exceptionAICG {
int retry = globalAICG.AICGDEFAULTRETRY;
boolean trxSucc =false;
trackEntry msgTemplate =

new trackEntry(globalAICG.AICGIDENTIFIER, aicgID1l, null);
Transaction trn = null;

while (retry !=0) {

try {
trn = trnMgr.createTransaction(globalAICG.USERTXNLEASE) ;
try{
distObj = (trackEntry)

'space.take (msgTemplate, trn, Long.MAX VALUE) ;
// called the actual method
distObj.data.setCallsign(si);
space.write (distObj, trn,globalAICG.AICGLEASETIME) ;
trn.commit () ;
retry = 0;
trxSucc = true;
}catch (Exception e){
trn.abort () ;
retry --;
System.err.println("Exception level 1: retrying");

}catch (Exception e) {
retry--;
System.err.println("Exception level 2: retrying");

}
}// end of while
if (ttrxSucc)
throw new exceptionAICG (exceptionAICG.SystemExceptionCode) ;
}

int retry = globalAICG.AICGDEFAULTRETRY;
boolean trxSucc =false;
trackEntry msgTemplate =
new trackEntry(globalAICG.AICGIDENTIFIER, aicgID1l, null);
Transaction trn = null;

while (retry !=0) {

try {
trn = trnMgr.createTransaction(globalAICG.USERTXNLEASE) ;
try{
distObj = (trackEntry)

space.take (msgTemplate, trn, Long.MAX_ VALUE) ;
// called the actual method
distObj.data.setPosition(post);
space.write(distObj, trn,globalAICG.AICGLEASETIME) ;
trn.commit () ;
retry = 0;
trxSucc = true;
}catch (Exception e){
trn.abort () ;

74

retry --;
System.err.println("Exception level 1: retrying");

}catch (Exception e) {
retry--;
System.err.println("Exception level 2: retrying");

}// end of while

if (!trxSucc)
throw new exceptionAICG(exceptionAICG.SystemExceptionCode) ;

}

NOTIFYAICG.JAVA

// Filename : notifyAICG.java
// Version : 0.1

// Compiler : jdk 1.2 or J++
// Generated: auto

// Date : 01/07/00

* Class autoCodeException

@author Cheng Heng Ngom
@version 0.1

Description
interface class, user application must implements notifyAICG

for event callback to work.
*/
package interfaceAICG;

public interface notifyAICG

public abstract void listenerAICGEvents (Object obj);

!
EVENTAICGID.JAVA
[] === oo
// Filename : eventAICGID.java
// Version : 0.1

// Compiler : jdk 1.2 or J++
// Gerenated: auto
// Date : 01/07/00

75

*

*

* @author Cheng Heng Ngom
* @version 0.1
*
*
%

Description
event class, used to categorise the type of events

package interfaceAICG;
import java.io.Serializable;

public class eventAICGID implements Serializable

{
private long id;
private Object src;

public eventAICGID(long id, Object src){
this.id=1id;
this.src=src;

public boolean equals (Object obj) {
if (obj == null){
return false;

if (obj.getClass() != this.getClass()){
return false;

eventAICGID tempID = (eventAICGID) obj;

if ((id == tempID.id) && (src.equals(tempID.src))){
‘return true;
lelse {

return false;

}
}

public String toString() {
return (src.toString() + Long.toString(id));

EVENTAICGHANDLER.JAVA

R T T T T T
// Filename : eventAICGHandler.java
// Version : 0.1

// Compiler : jdk 1.2 or J++
// Generated: auto
// Date : 01/07/00

76

@author Cheng Heng Ngom
@version 0.1

Description

Main event handler of the generated codes.
*/

package interfaceAICG;

import java.io.Serializable;
import java.util.Hashtable;

import java.rmi.RemoteException;

import java.rmi.server.*;

import net.jini.core.event.*;

import net.jini.core.lease.Lease;

import net.jini.core.transaction.*;

import net.jini.core.transaction.server.*;
import net.jini.space.JavaSpace;

/**

* eventAICGHAndler, handles all the external notification from the
space

*/
public class eventAICGHandler implements RemoteEventListener,
Serializable
{

private notifyAICG src;

private Hashtable storage;

private JavaSpace space;

public class registerAICG implements Serializable{
public EventRegistration reg;
public long segNum;
public Object anyObj;

public registerAICG(EventRegistration inReg, long inSeqgNum,
Object obj) {
segNum = inSegNum;
reg = inReg;
anyObj= obj;

}

public eventAICGHandler (notifyAICG inSrc) throws exceptionAICG{
src = inSrc;
space = spaceAICG.getSpace (globalAICG.AICGSPACENAME) ;
storage = new Hashtable() ;
// export the object
try(
UnicastRemoteObject.exportObject (this) ;
}catch (RemoteException e) {
System.err.println("error in exporting object");

77

e.printStackTrace();
throw new exceptionAICG (exceptionAICG.NotificationException) ;

}

public void notify(RemoteEvent event) {
notifyHandler nh = new notifyHandler (event) ;
new Thread (nh) .start();

}

/**
* trackAddNotify, add an object to the list of events to be
monitor :

*/

public eventAICGID trackAddNotify (trackExt indata) throws
exceptionAICG{
EventRegistration reg;
long seqgNum;
registerAICG tempReg;
eventAICGID keyID;

try{
trackEntry template = new trackEntry(globalAICG.AICGIDENTIFIER
,indata.getaicgIDl (),

null);

reg = space.notify(template, null, this,
globalAICG.AICGLEASETIME, null) ;

segNum = reg.getSequenceNumber () ;

tempReg = new registerAICG(reg, segNum, indata);

keyID = new eventAICGID(reg.getID(),reg.getSource());

String key = new String(keyID.toString());

storage.put (key, tempReg) ;

return keyID;
}catch (Exception e) {
System.err.println("Notification Exception");
throw new exceptionAICG (exceptionAICG.NotificationException) ;

}

/**
* trackAddNotify, add an object to the list of events to be
monitor with
* transaction control

*/

public eventAICGID trackAddNotify (trackExt indata, Transaction trn
)
throws exceptionAICG{
EventRegistration reg;
long segNum;
registerAICG tempReg;
eventAICGID keyID;

78

try{
trackEntry template = new trackEntry(globalAICG.AICGIDENTIFIER
, indata.getaicgID1(),
null);
reg = space.notify(template, trn, this, Lease.FOREVER,null);
seqNum = reg.getSequenceNumber () ;
tempReg = new registerAICG(reg,segNum, indata);
keyID = new eventAICGID(reg.getID(), reg.getSource());
storage.put (keyID, tempReqg) ;

System.out .println("Key: " + keyID);

return keyID;
}catch (Exception e) {

throw new exceptionAICG (exceptionAICG.NotificationException);
}

!

/**

* trackDeleteNotify, remove an object from the list of events to
be monitor

*/

public void trackDeleteNotify (eventAICGID id) throws exceptionAICG{
registerAICG tempReg;
try {
tempReg = (registerAICG) storage.remove (id);
Lease lease = tempReg.reg.getLease();
lease.cancel();

}catch (Exception e) {
throw new exceptionAICG (exceptionAICG.NotificationException) ;
}

}

public class notifyHandler implements Runnable({
private RemoteEvent event;

public notifyHandler (RemoteEvent event). {
this.event = event;

}

public void run() {
Object source = event.getSource();
long id = event.getID();
long segN = event.getSequenceNumber () ;
eventAICGID keyID= new eventAICGID(id, source) ;
registerAICG tempReg;

System.out .println("Key: " + keyID);
String key = new String(keyID.toString());
if ((tempReg = (registerAICG) storage.get(key)) !=null)

if (segN > tempReg.segNum) {
tempReg.segNum = seqN;
src.listenerAICGEvents (tempReg.anyObj) ;
} else {

// old events ignored

79

return;

}

}// end of notifyHandler
}// end of class

TRANSACTIONAICG.JAVA

// Filename : transactionAICG.java
// Version : 0.1

// Compiler : jdk 1.2 or J++

// Generated: auto

// Date : 01/07/00

@author Cheng Heng Ngom
@version 0.1

Description

static methods for supporting the transaction.

package interfaceldICG;

import java.rmi.*;

import net.jini.core.transaction.server.TransactionManager;

import com.sun.jini.mahout.Locator;
import com.sun.jini.outrigger.Finder;

public class transactionAICG
public static TransactionManager getManager (String name) {
Locator locator = null;
Finder finder = null;

if (System.getSecurityManager () == null) ({
System.setSecurityManager (
new RMISecurityManager());

if (System.getProperty(“"com.sun.jini.use.registry") !=
null) {
locator = new com.sun.jini.mahout.RegistryLocator();
finder = new com.sun.jini.outrigger.RegistryFinder();
} else {
System.out.println("lookup is used");
locator = new
com.sun.jini.outrigger.DiscoveryLocator () ;
| finder = new com.sun.jini.outrigger.LookupFinder () ;

80

return (TransactionManager)finder.find(locator, name);

}

public static TransactionManager getManager () {
return
getManager (com.sun.jini.mahalo.TxnManagerImpl.DEFAULT_ NAME) ;

}

TRANSACTINMANAGERAICG.JAVA

R it bkt
// Filename : transactionManagerAICG.java
// Version : 0.1

// Compiler jdk 1.2 or J++
// Generated: auto
// Date : 01/07/00

* Class autoCodeException

@author Cheng Heng Ngom
@version 0.1

Description
Main transaction handler.

/

package interfaceAICG;

* % % ok F * *

import net.jini.core.lease.Lease;
import net.jini.core.transaction.*;
import net.jini.core.transaction.server.*;

public class transactionManagerAICG

{

private TransactionManager TxnMgr;

public transactionManagerAICG() throws exceptionAICG {
// get the reference to transaction Manager
TXnMgr =
transactionAICG.getManager () ;

}

public TransactionManager getTransactionManager () {
return TxnMgr; :
}

public Transaction getDefaultTransaction() throws exceptionAICG

{

Transaction defaultTxn;
Transaction.Created trc = null;

try {

81

trc = TransactionFactory.create
(TxnMgr, globalAICG.AICCDEFAULTTXNLEASE) ;

defaultTxn = trc.transaction;

} catch (Exception e) {
System.err.println(

"Could not create transaction ");
throw new
exceptionAICG (exceptionAICG. TransactionException) ;

return defaultTxn;

public Transaction createTransaction(long leaseTime)throws
exceptionAICG
{
Transaction Txn;
Transaction.Created trc = null;
try {
trc TransactionFactory.create (TxnMgr, leaseTime) ;
TXn trc.transaction;
return Txn;
} catch (Exception e) {
System.err.println (
"Could not create transaction ");
throw new
exceptionAICG (exceptionAICG. TransactionException) ;

no#

}
}

EXCEPTIONAICG.JAVA
L LT —
// Filename : exceptionAICG.java
// Version : 0.1

// Compiler : jdk 1.2 or J++
// Generated : auto
// Date : 01/07/00

@author Cheng Heng Ngom
@version 0.1

Main Exception class of the automatic code generator. Each form of
excpetion is given an error code instead of having a new excetion
* class define for it.

*
*
*
* Description
*
*

package interfaceAICG;

public class exceptionAICG extends Exception

82

/**

* NotDefinedExceptionCode, given to any exception that
* does not have an error code

*/

public static final int NotDefinedExceptionCode = 0;

/**
* SystemExceptionCode
*/
public static final int SystemExceptionCode = 1;

/**

* Object not found, time out exception

*/
public static final int ObjectNotFoundException = 2;
/**

*

*/
public static final int TransactionException
/**

*

*/
public static final int LeaseExpireException
[x*

*

*/

public static final int CommunicationException = 5;

}
w

1]
'S

/**

*

*/
public static final int UnusableObjectException =6;
/**

*

*/

public static final int ObjectExistException = 7;
/**
*
*/
public static final int NotificationException = 8;
public static final String[] ExceptionMessages=
{"NotDefinedExceptionCode",
"SystemExceptionCode",
"ObjectNotFoundException",
"TransactionException",

"LeaseExpireException",

83

"CommunicationException",
"UnusableObjectException",
"ObjectExistException",

"NotificationException"};

/**
* errorCode define the type of exception that occur
*/

public int errorCode;

/**
* default constructor, no argument.
*/
public exceptionAICG () {
super () ;
errorCode = NotDefinedExceptionCode;

/**
* Constructor.
* @param code: int value of the error code
*/
public exceptionAICG(int code) {
super (ExceptionMessage [code]) ;
errorCode = code;

/**
* getErrorCode, return the erro code of the exception
* @return int, error code
*/ ‘
public int getErrorCode () {
return errorCode;

}

SPACEAICG.JAVA
R e T
// Filename : spaceAICG.java
// Version : 0.1

// Compiler : jdk 1.2 or J++
// Generated: auto
// Date : 01/07/00

/**
* Class autoCodeException
*

84

* @author Cheng Heng Ngom
* @version 0.1
*
* Description
* gtatic methods for supporting the java space.
*
/

package interfaceAICG;
import java.rmi.*;
import net.jini.space.JavaSpace;

import com.sun.jini.mahout.binder.RefHolder;
import com.sun.jini.mahout.Locator;
import com.sun.jini.outrigger.Finder;

public class spaceAICG {

public static JavaSpace getSpace (String name)throws exceptionAICG

{
try {
if (System.getSecurityManager() == null) {
System.setSecurityManager (
new RMISecurityManager());

}

if (System.getProperty("com.sun.jini.use.registry")
== null)
{

Locator locator =

new com.sun.jini.outrigger.DiscoveryLocator();
Finder finder =

new com.sun.jini.outrigger.LookupFinder () ;
return (JavaSpace)finder.find(locator, name);

} else {

RefHolder rh = (RefHolder)Naming.lookup (name) ;
return (JavaSpace)rh.proxy();

} catch (Exception e) {
System.err.println(e.getMessage());
}

throw new exceptionAICG (exceptionAICG.SystemExceptionCode);

}

public static JavaSpace getSpace ()throws exceptionAICG

{
}

return getSpace ("DODSpaces") ;

POSITION TYPE.JAVA

package modelv2;
import java.io.Serializable;

85

public class position_type implements Serializable

{

public int x;
public int y;
public position_type(int x, int y)

this.x
this.y

x;
Yi

public String toString() {
return (Integer.toString(x) + " " +Integer.toString(y));
}

}

86

APPENDIX C. PSDL2SPACE CODE LISTINGS

AUTOMCODEEXCEPTION.JAVA

[/ = oo

// Filename : automCodeException.java

// Version : 1.0

// Compiler : jdk 1.2 or J++

/] = oo

package psdl2java.global;
/**

*
@author Cheng Heng Ngom
@version 1.0

Description

Main Exception class of the automatic code generator. Each form of
excpetion is given an error code instead of having a new excetion
class define for it.

* ¥ % %* ¥ F *

public class automCodeGenException extends Exception

/**
* NotDefinedExceptionCode, given to any exception that
* does not have an error code

*/
public static final int NotDefinedExceptionCode = -1;
/**

* SystemExceptionCode 0 to 9

*/
public static final int SystemExceptionCode = 1;
/**

* Paser Exception is given the code 10 to 19

*/
public static final int ParserExceptionCode = 10;
/**

* Wrong Type expected

*/
public static final int ParserWrongTypeCode =11;
/**

* gyntax Error, eg, missing END

*/
public static final int ParserSyntaxError = 12;
/**

* State or output parameter must not be of primitive type

*/

87

public static final int ParserStateError = 13;

/**
* EOF detected, while in the middle of parser.
*/
public static final int ParserEOFExceptionCode =14;

/**
* ExceptionMessage, String of the exception in array for indexing.
*
/
public static final String(]
ExceptionMessage= {"NotDefinedExceptionCode",
null,null,null,null,null,
null,null,null,
"Parser: Exception Error",
“Parser: Wrong Type Code",
"Parser: Syntax Error",
"Parser: State Error",
"Parser: EOF detected"};

/**
* errorCode defines the type of exception that occur
*/

public int errorCode;

/**
* default constructor, no argument.
*/
public automCodeGenException () {
super () ;
errorCode = NotDefinedExceptionCode;
}
/**

* Constructor.
* @param code: int value of the error code
*/

public automCodeGenException (int code) {
super () ;
errorCode = code;

/**
* getErrorCode, return the erro code of the exception
* @return int, error code
*/
public int getErrorCode () {
return errorCode;

/**
* printErrorCode, print the error code of the exception
* @return void

*/
public void printErrorCode () {
System.err.println("*** Exception Code: " + errorCode + " "

88

+ ExceptionMessage [errorCode]l) ;

1
}

CLASSDEFINITION.JAVA
e L L LR LR L e e
// Filename : classDefinition.java
// Version : 1.0
// Compiler : jdk 1.2 or J++
/] == mm e s

of the server and the naming components.

package psdl2java.global;
import java.util.Vector;
import java.io.Serializable;
import java.util.Enumeration;

public class classDefinition implements Serializable

{
/**
* distObjectName, name of the server
*/
private String distObjectName;
/**
* method, stores all the name of the method
*/
private Vector methods;
/**
* id, identification
*/
private Vector id;
/**
* currMethod, current method of the class in use
*/
private methodDefinition currMethod;
/**
* objectPro, object space properties
*/
private spaceProperties objectPro;
/**
* distributed, is it an aicg object
*/
private boolean distributed = true;
/**

* packageName, package name of the class

*/

89

|

[**
* @author Cheng Heng Ngom
* @version 1.0
* classDefinition defines all the fields needed to
* generate a class interface. It contains the name
*
*

private String packageName;

/**
* count, number of identification id
*/

private int count = 0;

/**

* Default Constructor, initialise all the values
*
*/
public classDefinition () {
distObjectName = new String("");
// create a new methods vector
methods = new Vector();
id = new Vector();
objectPro = new spaceProperties();
packageName = new String("");

/**
* Constructor .
* @param sName, name of the class in Sting
* v
*/

public classDefinition(String sName) {
distObjectName = new String(sName) ;
// create a new methods vector
methods = new Vector();
id = new Vector();
objectPro = new spaceProperties();
packageName = new String("");

}
/**

* setName, set the class name
* @param name, new name in String
* @return void
*/
public void setName (String name) {
distObjectName = new String (name);

/**
* getName, return the name in String
* @return String
*/
public String getName () {
return distObjectName;
}
/**
* addMethod, add a method to the class
* @param sName, name of the method in String
* @param sretType, return type in String
* @return methodDefinition, method class
*/
public methodDefinition addMethod(String sName, String sretType) {
currMethod = new methodDefinition(sName, sretType);
// add a new method into the vector

90

methods .addElement (currMethod) ;
return currMethod;

}
/**
* addMethod, add a method to the class with return type as void
* @param sName, name of the class in String
* @return methodDefinition, method class
*
/
public methodDefinition addMethod(String sName) {
currMethod = new methodDefinition (sName) ;
// -add a new method into the vector
methods .addElement (currMethod) ;
return currMethod;

1
/**

* addID, add a new identification variable
* @param sName, name of the variable
* @param ty, type of the varaible in String
* @return void
*/
public void addID(String sName, String ty){
variableDefinition vd = new
variableDefinition(definition. IN, sName, ty) ;
id.addElement (vd) ;
// refresh the ID string
vd.mapID() ;
getIDTypes () ;
count ++;

}
/**

* getIDs, return a list of identification IDs
* @return Vector, list of Ids
*/
public Vector getIDs () {
return id;

/**
* getMethod, return a list of methods
* @return Vector, list of Method Definition
*/
public Vector getMethods () {
return methods;
}

/*
* getCurrentMethod, return the current method
* @return methodDefinition
*/
public methodDefinition getCurrentMethod () {
return currMethod;
/*
* getProperties, return the space properties of the class
* @return spaceProperties

91

*/
public spaceProperties getProperties () {
return objectPro;

/*

*

setObjectState, set the space property distributed
@param state, new distribute state in boolean
@return void

* %

*/
public void setObjectState (boolean state) {
distributed = state;
}
/*
* getObjectState, return the space distributed state
* @return boolean, the state of the object (true -use space, false

* normal object)
*/
public boolean getObjectState () {
return distributed;
}
/*
* setPackageName, set the name of the package the class belong to.
* @param name, name of the package
* @return void
*/
public void setPackageName (String name) {
packageName = name;

getPackageName, return the package name the class belong to.
@return String, name of the package

~
* % ¥ %

*/
public String getPackageName () {
return packageName;

/**
* getIDTypes, return the type follow by name of the ID in String

* @return String, eg. int aicgIDl, ...
*

*/

public String getIDTypes () {
//
Enumeration enumIDs = id.elements () ;
variableDefinition vDef;
String sTemp = null;
if (enumIDs. hasMoreElements()){
vDef = (variableDefinition) enumiIDs. nextElement()
sTemp = new String(vDef.getType() + ' ' +
vDef.getClassID() .getAICGName ()) ;
while (enumIDs.hasMoreElements()) {
vDef = (variableDefinition) enumIDs.nextElement () ;
sTemp = new String(sTemp + ", " + vDef.getType() + ' ' +
vDef.getClassID () .getAICGName ()) ;

S92

}
}

return sTemp;

}
/**

* getIDNames, return only the ID names separated by comma
* @return String, eg. aicgIDl, aicgID2, etc

*/
public String getIDNames () {

Enumeration enumIDs = id.elements () ;

variableDefinition vDef;

String sTemp = null;

if (enumIDs.hasMoreElements ()) {

vDef = (variableDefinition) enumIDs.nextElement () ;
sTemp = new String(vDef.getClassID().getAICGName());
while (enumIDs.hasMoreElements ()) {
vDef = (variableDefinition) enumlDs.nextElement () ;
sTemp = new String(sTemp + ", " +

vDef .getClassID{() .getAICGName ()) ;

}

return sTemp;

}
/*

* getNoIDs, return the number of ID in this class
* @return int, number of ID
*/
public int getNoIDs () {
return count;

}

CLASSIDDEFINITION.JAVA

R el bl
// Filename : classIDDefinition.java

// Version : 1.0

// Compiler : jdk 1.2 or J++

F ittt
package psdl2java.global;

/**

* @author Cheng Heng Ngom
* @version 1.0
* Description
* Defines the identification structure.
*/
public class classIDDefinition extends Object {
/**

* vD, variable class of the Id

93

*/
private variableDefinition vD;
/**
* aicgIDName, local name of the ID, used by the AICG only
*/
private String aicgIDName;
/**
* count, local counter.
*/

static private int count = 1;

/**
* default constructor.
* @param inVD, input variable Definition.
*/
public classIDDefinition(variableDefinition inVD) (
aicgIDName = new String("aicgID" + count);

vD = inVD;
count ++;
/**

* getAICGName, return the local ID name
* @return String, name of the local ID
*/

public String getAICGName () {
return aicgIDName;

/**
* getVD, return the variable Definition of the class
* @return variableDefinition.
*/
public variableDefinition getVvD() {
return vD;

DEFINITION.JAVA
/= e e e e -
// Filename : definition.java
// Version : 1.0
// Compiler : jdk 1.2 or J++
R
/**

* @author Cheng Heng Ngom
* @version 1.0
* definition defines all the global static fields
* of the AICG parser and generator
*/
package psdl2java.global;

public class definition

public final static int MAXNUMBERMETHODS = 100;
public final static int MAXRESERVEWORDS = 100;

94

final static int
final static int

public
public

// for
public
public
public

final static int
final static int
final static int

// java primitive type
public final static int

MAXTOKEN
MAXFIX

31;
31;

future ada implemetation-- not used for java

IN 0;
ouT 1;
INOUT =2;

SBOOLEAN 1;

SCHAR
SBYTE
SSHORT
SINT
SLONG
SFLOAT
SDOUBLE

2
3

public final static int
public final static int
public final static int
public final static int
public final static int
public final static int
public final static int

i
= 4;
5

= 6

i
= 7;
8;

//java non-primitive type
public final static int SSTRING
public final static int VECTOR
// java undeclare type

public final static int SVOID

9;
1;

10;
// user define type
public final static int SUSERTYPE

0;
// Java object for primitive type
public final static String[] SOBJECT= {

"Character",

"void"};

// java primitive type

public final static String[] SPRIMITIVE
"char",

nyoidn } ;

// SPACE method properties

public final static int SPCONSTRUCTOR
public final static int SPREAD 1;
public final static int SPWRITE 2;
public final static long SPTTIME 2000;

SPYES 1;
SPNO 0;
SPSERVER
SPSERVERS
SPALL 2;

int
int
int
int
int

static
static
static
static
static

final
final
final
final
final

public
public
public
public
public

’
= 1;

95

null, "Boolean",

" Byte " , n short n .

"Integer", "Long", "Float",
"Double", "String",

= { null, "boolean",
"bytell , "short] ,

nint" , "long" , nfloat" ,
"double", "String",

public final static int SPMANY = 11;
public final static int SPONE = 10;

// default setting

public static String DEFAULTPACKAGENAME = "interfaceAICG";
public static final String DEFAULTSPACENAME = "DODSpaces";
/**

* spaceTranslate, translate a String name into the
* AICG enumerate type
* @param name, String of the type
* @return int, the enmumerate type
*/ :
public static int spaceTranslate(String name)
throws automCodeGenException{
if (name.compareTo ("CONSTRUCTOR")== 0) {
return SPCONSTRUCTOR;
}else if (name.compareTo ("READ")== 0) {
return SPREAD;

}else if (name.compareTo ("WRITE")== 0) {
return SPWRITE;

}else if (name.compareTo("YES")== 0) {
return SPYES;

}else if (name . compareTo ("NO") == 0) {

return SPNO;

}else if (name . compareTo ("SERVER") == 0) {
return SPSERVER;

}else if (name.compareTo ("SERVERS")== 0) {
return SPSERVERS;

}else if (name.compareTo ("ALL")== 0) {
return SPALL;

}else if (name.compareTo ("MANY")== 0) {
return SPMANY;

}else if (name.compareTo("ONE")== 0) {
return SPONE;

}else{

throw new automCodeGenException (
automCodeGenException.ParserWrongTypeCode) ;

METHODDEFINITION.JAVA

// Filename : methodDefinition.java

96

// Version : 0.2

// Compiler : jdk 1.2 or J++

/] =
/**

* @author Cheng Heng Ngom
* @version 0.1 v
* methodDefinition defines the method and it parameters
* .
*/
package psdl2java.global;
import java.io.Serializable;
import java.util.Vector;
import java.util.Enumeration;

public class methodDefinition implements Serializable

/**

* paramters, input and output fields of the method
*/

private Vector parameters;

/**
* name, name of the method
*/

private String name;

/** .
* returnType, return type in String
*/

private String returnType;

J**
* enumeration type of the return type
*/

private int rtype;

/**

* gpacemode, mode :SPREAD, SPWRITE, SPCONSTRCUCTOR
*/

private int spaceMode = definition.SPREAD;

/**
* gpaceTransaction, define the transaction control on
* the method. (SPYES, SPNO)
*/

private int spaceTransaction = definition.SPNO;

/**
* gpaceTransactionTime, define the time the transaction must
* commit before it expire.(nnnn ms, deafult 2000ms)
*/

private long spaceTransactionTime = definition.SPTTIME;

/**
* Constructor.
* @param mname, name of the method
*/
public methodDefinition(String mname) {
parameters = new Vector();
name = new String(mname) ;
returnType = new String("void");
rtype = variableDefinition.javaType ("void") ;

97

/**
* Constructor.
* @param mname, name of the method
* @param returnValue, return type
*/
public methodDefinition(String mname, String returnvalue) {
parameters = new Vector();
name = new String(mname) ;
returnType = new String (returnvalue);
rtype = variableDefinition.javaType (returnvalue) ;

}

/**
* setRetType, modifies the return type of the method
* @param returnValue, return type in String
* @return void
*/
public void setRetType (String returnvalue) {
rtype = variableDefinition.javaType (returnvalue) ;
if (rtype == definition.SUSERTYPE) {
returnType = new String(returnvalue) ;
}else {
returnType = new String(definition.SPRIMITIVE [rtype]) ;

}

/**
* getRetType, return the return type of the method
* @return String, return type in String
*/
public String getRetType () {
return returnType;
}
[**
* getJavaRetType, return the return type in Java object enumerate
* type
* @return int, enumerate type in int
*/
public int getJavaRetType () {
return rtype;

addparameter, add new input.output parameter into the method
@param dir, input, output or both

@param n, name of the variable

@param ty, type of the variable

@return void

* F b % % ¥

*/

public void addParameter (int dir, String n, String ty){
variableDefinition vd = new variableDefinition(dir,n,ty);
parameters.addElement (vd) ;

/**

o8

* getName, return the name of the methods
* @return String, name of the method

*/

public String getName () {
return name;
}

/**
* getParameters, return the list of parameter
* @return Vector, list of vairableDefinition
*/

public Vector getParameters () {
return parameters;

/**
* getParametersString, return the list of parameter
* @return String, list of vairableDefinition in the form
* Integer name, Float etc
*
/
public String getParameterString() {
Enumeration enumIDs = parameters.elements();
variableDefinition vDef;
String sTemp = new String();
int counter = 0;
if (enumIDs.hasMoreElements ()) {
vDef = (variableDefinition) enumIDs.nextElement ();
sTemp = new String(vDef.toString());
while (enumIDs.hasMoreElements ()) {

vDef = (variableDefinition) enumIDs.nextElement ();
if (counter == 0){
sTemp = new String(vDef.toString());
telse{
sTemp = new String(sTemp + ", " + vDef.toString());
counter++;

}
}

return sTemp;

}
/**

* getParameterName, return the list of parameter names of the
method
* @return String, the name of the parameters in aicgIDl, aicgID2

*
/
public String getParameterName () {
Enumeration enumIDs = parameters.elements();
variableDefinition vDef;
String sTemp = new String();
if (enumIDs.hasMoreElements ()) {
vDef = (variableDefinition) enumIDs.nextElement () ;
sTemp = new String(vDef.getID());
while (enumIDs.hasMoreElements ()) {
vDef = (variableDefinition) enumIDs.nextElement ();

99

sTemp = new String(sTemp + ", " + vDef.getID());

}

return sTemp;

}

/**
* setReadProperty, set the method whether it is
* a read, or write.
* @param int, 0 : read, 1: write
* @return void
*/
public void setReadProperty (int mode) {
spaceMode = mode;
if (spaceMode == definition.SPCONSTRUCTOR) {
returnType = new String();

}
/**
* getReadProperty, return the read property
* @return int, 0: constructor, l:read, 2: write
*/
public int getReadProperty () {
return spaceMode;

1
/**
* setTransaction, set whether transaction is enable for this
method
* @return void
*/
public void setTramsaction(int ty) {
spaceTransaction = ty;

/**
* getTransaction, return the value of transaction
* @ return int, SPYES : transaction enable, SPNO: transaction
disable
*/
public int getTransaction () {
return spaceTransaction;

}
/**
* setTransactionTime, set the transaction time before it expire
* @param ty, time in minisecond
* @return void
*/
public void setTransactionTime (long ty) {
spaceTransactionTime = ty;

/**
* getTransactionTime, return the transaction time of the method
* @return long, the transaction time in miniseconds
*/
public long getTransactionTime () {
return spaceTransactionTime;

100

}
!
READER.JAVA
J]~ oo
// Filename : reader.java
// Version : 1.0
// Compiler : jdk 1.2 or J++
S nha e

package psdl2java.global;

import java.io.*;

/**

* Class reader

*

* @author Cheng Heng Ngom

* @version 0.1

*

* Description

* An abstract class that get the reserve words from a file and
* get up the tokenizer for the input file

*/

public abstract class reader

/**
* arrays of reserve words
*/
protected String reserveWords(];
/**
* Reader file to obtain the input to be parsed
*/ ’
private BufferedReader inReader;
/**
* Reader file to obtain the reserve words of the languages
*/ :
private BufferedReader reserveFileReader;
/**
* Input Stream Token
*/
protected StreamTokenizer inStreamTokenizer;
/**

* Arguments Constructor,

101

* @param inFileName: input PSDL file

* @param reserveFileName: reserve words text file

*/

public reader(String inFileName, String reserveFileName)

throws automCodeGenException{

// check if the file exist

try(
inReader = new BufferedReader(new FileReader (inFileName)) ;
reserveFileReader = new BufferedReader(new

FileReader (reserveFileName)) ;

}Jcatch (IOException e) {
System.err.println("File open error");
throw new
automCodeGenException(automCodeGenException.ParserExceptionCode);

}

reserveWords = new Stringl[definition.MAXRESERVEWORDS] ;

try{
// get the reserve words

getReserxve () ;

// initialise the stream tokenizer
initStreamTokenizer () ;

}catch (automCodeGenException e) {
throw new automCodeGenException(e.errorCode) ;
}

}
/**
* getReserve, gets the reserve words from a file and save it on
* an array.
* @return void
* @exception automCodeGenException
*
/
private void getReserve()throws automCodeGenException {
int srType;
int 1 =0;
try {
StreamTokenizer sReserve = new
StreamTokenizer (reserveFileReader) ;
// ignore the EOL
sReserve.eolIsSignificant (false) ;
sReserve.ordinaryChar (95) ;
srType = sReserve.nextToken() ;

while (srType != StreamTokenizer.TT_EOF) {
if (srType == StreamTokenizer.TT WORD) {
reserveWords [i] = new String (sReserve.sval);
i++;

srType = sReserve.nextToken();

}
}// end of while
}catch (Exception e){
throw new automCodeGenException (
automCodeGenException.ParserExceptionCode) ;

102

}
}

[** .
* jinitStreamTokenizer, provide basic initization of the input
* tokens. should be overrrided for customization.

* @return void;

* @exception automCodeException

*/

public void initStreamTokenizer() throws automCodeGenException

{

inStreamTokenizer = new StreamTokenizer (inReader) ;
inStreamTokenizer.eolIsSignificant (true);

// any other initialisé needed?

/**
* Abstract method to be implemented by the sub class on how the
* tokens is used
*/
public abstract String getNextToken (boolean checkEOL) throws
automCodeGenException;

/**
* Abstract method to define the main production of the grammmars.
*/
public abstract boolean mainProduction() throws
automCodeGenException;

}// end of class

SPACEPROPERTIES.JAVA
GRS RS
// Filename : spaceProperties.java
// Version : 1.0
// Compiler : jdk 1.2 or J++
2 et e
/**

* @author Cheng Heng Ngom
* @version 1.0

*/
package psdl2java.global;

import java.io.Serializable;

/**
* spaceProperties defines all the fields for the AICG

* gpace generated interface.

103

*
*/
public class spaceProperties implements Serializable

{

* %
/* spaceName, name of the space to use
*
prévate String spaceName;
/**
* ownership, allows server to use the object
*
prévate int ownership = definition.SPYES;
%* %
/* security, type of security; server/all
*
prévate int security = definition.SPSERVER;
* %
/* lease, time in ms before the object expired
*
prévate long lease = Long.MAX VALUE ;
* %
/* clone, duplication allow
*
ﬁrévate int clone = definition.SPONE;
* %

* notify, notication of modification enable/disable
*/
private int notify = definition.SPNO;
/**
* constructor, create a new space properties with
* default setting.

*
*/
public spaceProperties() {
spaceName= new String ("DODSpaces") ;

ownership = definition.SPYES;
security = definition.SPSERVER;
lease = Long.MAX VALUE;

clone = definition.SPONE;

notify = definition.SPNO;

*

Argument constructor

@param name, Name of the Space

@param own, ownership

@param sec, security

@param duration, lease time in ms

@param num, clone number

@param notifyIn, notification enable or disable

}
/

¥ ok % ¥ % % ¥ %

*/
public spaceProperties (String name, int own, int sec, int durationm,
int num, int notifyIn) {

104

spaceName= new String(name);
ownership = own;

security = sec;

lease = duration;

clone = num;

notify = notifyIn;

}
/**
* getName, change the name of the space
* @param name, name of the new space
* @return void
*/
public void setName (String name) {
spaceName = name;

/**
* getName return the name of the space
* @return String, name of the space
*/
public String getName () {
return spaceName;
/**
* gsetOwnership, set the ownership properties
* @param own, new ownership
* @return void
*/
public void setOwnership (int own) {
ownership = own;
}
/**
* getOwnership, return the ownership value
* @return int, ownership value
*/
public int getOwnership ()
return ownership;
}
/**
* getSecurity, set the security property
* @param indata, security value
* @return void
*/
public void setSecurity(int indata) {
security = indata;
[**
* getSecurity, return teh security value
* @return int, security value
*/
public int getSecurity () {
return security;

}

105

/**
* setLease, set the lease in ms
* @param indata, new lease in ms
* @return void
*/

public void setLease(long indata) {
lease = indata;

}
/**
* getLease, return the lease in ms
* @return long, lease in ms
*/
public long getLease () {
return lease;

}
/**
* setClone, set the number of clone allow
* @eparam indata, number of clone allow
* @return void
*/
public void setClone (int indata) {
clone = indata;
p

/**
* getClone, return the number of clone
* @return int, number of clone allow
*/

public int getClone () {
return clone;

}

/**
* setNotify, set the notify for modification
* @param indata, value of the notify
* @return void
*/
public void setNotify(int indata) {
notify = indata;

}
/**
* getNotify, return the value of notify
* @return int, value of notify
*
/
public int getNotify () {
return notify;

VARAIBLEDEFINITION.JAVA

A S
// Filename : variableDefinition.java

// Version : 1.0

// Compiler : jdk 1.2 or J++
e T ————

106

package psdl2java.global;
import java.io.Serializable;

/**
* @author Cheng Heng Ngom
* @version 0.1
* variableDefinition defines a type definition.
* input/ouput type_id : type

*
*/
public class variableDefinition implements Serializable
{
/**
* io, state whether the variable is an input or output

*/

private int io = definition.IN;

/**
* varID, name of the variable
*/

private String varID;

/**
* stype, type of the variable in String
*/

private String stype;

/**
* itypem type of variable in integer enumerated
*/

private int itype;

/**

“* cID, keep track of the aicg names used in conjuction with this
* variable
*/

private classIDDefinition cID;

/**
* Default Constructor. .
* @param sio, new input or output state
* @param id, name of the variable
* @pram ty, type of the variable
*
*/
public variableDefinition(int sio, String id, String ty){
io = sio; :
varID = new String(id);
itype = javaType(ty);

if (itype == definition.SUSERTYPE) {
stype = new String(ty);
}else {
stype = new String(definition.SPRIMITIVE [itype]);

/**

* getID, return the name of the variable

107

* @return

*/

String, name of the variable

public String getID() {
return varID;

}

/**

* getType,

* @return

*/

return the type of the variable
String, type of the variable

public String getType () {
return stype;

/**

* getIType, return the type of the variable in integer

* enumeration.

* @return

*/

int, type of the variable in int enumeration

public int getIType () {
return itype;

/**

* javaType,

* type.

* @param stype, type in String.

* @return

*/

int, enumeration type of the input String

public static int javaType(String stype) {
// Jjava primitive type
if (stype.compareTo ("boolean")==0) {

}

return
}else if
return
lelse if
return
}else if
return
}else if
return
}else if
return
}else if
return
}else if
return
}else if
return
lelse if
return
}else {
return

}

/**

definition.SBOOLEAN;
(stype.compareTo ("char")==0) {
definition.SCHAR;
(stype.compareTo ("byte")
definition.SBYTE;
(stype.compareTo ("short")==0) {
definition.SSHORT;
(stype.compareTo ("integer") ==0) {
definition.SINT;
(stype.compareTo ("long")==0) {
definition.SLONG;
(stype.compareTo ("float")==0) {
definition.SFLOAT;

==0){

(stype.compareTo ("double") ==0) {
definition.SDOUBLE;
(stype.compareTo ("string")==0) {
definition.SSTRING;
(stype.compareTo ("void")==0) {

definition.SVOID;

definition.SUSERTYPE;

108

convert the String type into int enumeration

* getJavaObject, return the type convert to Java Object in String
* @return String, type of the variable in Java Object
*/
public String getJavaObject () {
return definition.SOBJECT[itypel];

/**

* toString, override the base method.

* @return String, variable declaration format
* eg. Integer idl

*/
public String toString() {
return stype + ' ' + varlD;
/**

* mapID, create a new classIDDefinition for this object
* @return void
*/

public void mapID() {
¢ID = new classIDDefinition(this);

}
/**
* getClassID, return the classIDDefinition create for this object
* @return classIDDefinition, ClassIDObject for this object
*/
public classIDDefinition getClassID() {
return cID;

}

}

PSDLDEFINITION.JAVA
T
// Filename : psdlDefinition.java
// Version : 1.0
// Compiler : jdk 1.2 or J++
2 R R
package psdl2java.parser;

/**

* @author Cheng Heng Ngom

* @version 1.0

* psdlDefinition interface defines al the constants used
* by the AICG.

*/

public interface psdlDefinition

final int TYPE = 0;

final int OPERATOR = 1;

final int SPECIFICATION = 2;
final int IMPLEMENTATION = 3;
final int GRAPH =4;

final int EDGE = 5;

final int STATES = 6;

109

final int INPUT = 7;
final int OUTPUT = 8;
final int PROPERTY = 9;
final int AXIOMS = 10;
final int VERTEX = 11;
final int GENERIC = 12;

final int IF 13;
final int MS 14;
final int SEC = 15;
final int END = 16;
final int MIN = 17;
final int MICROSEC = 18;
final int KEYWORDS = 19;

final int TRIGGERED 20;
final int EXCEPTION 21;
final int INITIALLY = 22;
final int EXCEPTIONS = 23;
final int DESCRIPTION = 24;
final int OR = 25;

final int AND 26;

final int MOD 27;

final int REM = 28;

final int XOR = 29;

final int DIGIT = 30;
final int LETTER = 31;
final int TRUE = 32;

nn

final int FALSE = 33;
final int TIMER = 34;
final int HOURS = 35;

final int PERIOD = 36;
final int EOL =37;
// added new Definition

final int CORBA = 38;

final int JAVA = 39;

final int SPACE = 40;

final int SPACEMODE = 41;
final int READ = 42;

final int WRITE = 43;

final int CONSTRUCTOR = 44;
final int SPACENAME = 45;
final int SPACELEASE = 46;
final int SERVER = 47;

final int EXTENDED = 48;
final int SPACESECURITY = 49;
final int SERVERS = 50;

final int ALL = 51;

final int OWNERSHIP = 52;
final int SECURITY = 53;
final int LEASE = 54;
final int CLONE = 55;
final int NOTIFY = 56;

final int TRANSACTION = 57;
final int TRANSACTIONTIME = 58;

110

PSDLREADER.JAVA
[/ = e e e m o oo —-—-mee—oo—ooo
// Filename : psdlReader.java
// Version : 1.0
// Compiler : jdk 1.2 or J++
J/=mmmmmmem s m e m oo e mm——memco—o—o----o-o-

package psdl2java.parser;

import java.io.*;
import java.util.Vector;

import psdl2java.global.*;
/**

* @author Cheng Heng Ngom

* @version 1.0

* psdlReader implement the reader which check the

* syntax of the PSDL input file and extract the necessry
* information

*/
public class psdlReader extends reader implements psdlDefinition
{
/**
* Name of the server
*/
private Vector distObject;
/**
* class properties of the interface
*/

private classDefinition mainServerClass;

/**
* Argumentals constructor.
* @param inFileName, name of the PSDL input file
* @param reserveFileName, name of the PSDL reserve file name
*/

public psdlReader (String inFileName, String reserveFileName)
throws automCodeGenException{

super (inFileName, reserveFileName) ;

// initialise the distObject 1list
distObject = new Vector();

//include ':' as a white space
inStreamTokenizer.whitespaceChars (58,58) ;
//include '=' as a white space
inStreamTokenizer.whitespaceChars('=','=");
// include '_' as a character
inStreamTokenizer.wordChars (95, 95) ;

111

}
/**

* getNextToken, get the next token from the input stream
* @param checkEOL, if true, EOL is treaded as a token else ignored
* @return String, the token
*/
public String getNextToken (boolean checkEOL) throws
automCodeGenException{

try{
while (true) {

inStreamTokenizer.nextToken () ;

if (inStreamTokenizer.ttype != StreamTokenizer.TT_EOF) {
%f (inStreamTokenizer.ttype == StreamTokenizer.TT_ WORD)

return inStreamTokenizer.sval;
}else if (inStreamTokenizer.ttype ==
StreamTokenizer.TT_EOL)

if (checkEOL) {
return null;

}else throw new automCodeGenException (
automCodeGenException.ParserWrongTypeCode) ;
}else {
throw new automCodeGenException (
automCodeGenException.ParserEOFExceptionCode) ;

}
}// end of While

}catch (IOException e) {
throw new automCodeGenException (
automCodeGenException.ParserExceptionCode) ;

~N—

* ¥ F ¥ F %

getNextToken, check if the next token from the input stream is
the same as the input reserve word.
@param waitOn, the reserve word to be used for compare
@return void,
@exception automCodeException, IOException.
*
/
public void getNextToken (int waitOn) throws automCodeGenException,
IOException{
String tempStr;
if (waitOn != EOL){
while (true) {
inStreamTokenizer.nextToken () ;
if (inStreamTokenizer.ttype != StreamTokenizer.TT_ EOF) {
if (inStreamTokenizer.ttype == StreamTokenizer.TT WORD) {
tempStr = new String(inStreamTokenizer.sval) ;
if (tempStr.compareTo (reserveWords [waitOn])==0) {
break;
telse {
// not the correct waitOn type

112

throw new automCodeGenException (
automCodeGenException.ParserWrongTypeCode) ;

}

}

}else {

throw new automCodeGenException (
automCodeGenException.ParserEOFExceptionCode) ;

}
}// end of while
}else // equal to EOL, remove all token of that line

while (true) {
inStreamTokenizer.nextToken() ;

if (inStreamTokenizer.ttype != StreamTokenizer.TT_EOF) {
if (inStreamTokenizer.ttype == StreamTokenizer.TT_EOL) {
break;
}else {

throw new automCodeGenException (
automCodeGenException.ParserEOFExceptionCode) ;

}
}// end of while

}
/**
* getNumNextToken, get the number from the input stream
* @param checkEOL, if true, EOL is treaded as a token else ignored
* @return String, the token
*/
public long getNumNextToken (boolean checkEOL) throws
automCodeGenException

try{
while (true) {
inStreamTokenizer.nextToken () ;
if (inStreamTokenizer.ttype !I= StreamTokenizer.TT_EOF) {
if (inStreamTokenizer.ttype == StreamTokenizer.TT_ NUMBER)

return (int)inStreamTokenizer.nval;
}else if (inStreamTokenizer.ttype ==
StreamTokenizer.TT_EOL)

if (checkEOL) {
return -1;

}else throw new automCodeGenException (
automCodeGenException.ParserWrongTypeCode) ;
}else {
throw new automCodeGenException (
automCodeGenException.ParserEOFExceptionCode) ;

}
}// end of While
}catch (IOException e){

throw new automCodeGenException (
automCodeGenException.ParserExceptionCode) ;

113

/**
* Method to define the main production of the grammmars.
* / ’
public boolean mainProduction() throws automCodeGenException|
int currentProduction = 0 ;
String tempS ="";
String tempS2;
String tempS3;

try {
while (true){
switch (currentProduction) {
//Type

case 0 : getNextToken (TYPE);
currentProduction = 10;
break;

case 10: tempS = new String (getNextToken (false));

// initialise a new class definition without any parameters
mainServerClass = new classDefinition();
mainServerClass.setName (tempS) ;
currentProduction = 20;
break;

//Specification

case 20: getNextToken (SPECIFICATION) ;
currentProduction = 30;
break;

// get the identification varaibles
case 30: tempS = new String (getNextToken (false));

if (tempS.compareTo (reserveWords [END]) == 0){
currentProduction = 40;
}else {

tempS2 = new String(getNextToken (false)) ;
mainServerClass.addID (tempS, tempS2) ;

break;

// OPERATOR & IMPLEMENTATION
case 40: tempS = new String(getNextToken (false)) ;
if (tempS.compareTo (reserveWords [OPERATOR]) == 0) {
operatorProduction () ;

} else if (tempS.compareTo (
reserveWords [IMPLEMENTATION]) == 0){
currentProduction = 50;
} else {
throw new automCodeGenException (
automCodeGenException.ParserSyntaxError) ;

}

break;
case 50: tempS = new String(getNextToken (false));

if (tempS.compareTo (reserveWords [SPACE]) == 0) {
spaceProduction() ;

114

currentProduction = 60;

}else if (tempS.compareTo (reserveWords [END]) == 0){
currentProduction = 60;
}else if (tempS.compareTo (reserveWords [JAVA]) == 0)

mainServerClass.setObjectState (false) ;
tempS2 = new String(getNextToken (false));
mainServerClass.setPackageName (tempS2) ;

}

break;
case 60: distObject.addElement (mainServerClass) ;
tempS = new String(getNextToken (false)) ;

if (tempS.compareTo (reserveWords [TYPE])==0) {
currentProduction = 10;
}else {

throw new automCodeGenException (
automCodeGenException.ParserSyntaxError) ;

break; // end state, when the EOF is reach

}// end of switch
}// end of while
}catch (automCodeGenException e) {
if ((e.errorCode ==
automCodeGenException.ParserEOFExceptionCode)
& (currentProduction == 60)) {
System.err.println("Phase 1 : Parser Completed without

error") ;
return (true);

System.err.println(" *** Parser error detected **x*");

e.printErroxCode () ;

System.err.println("*** On line number " +
inStreamTokenizer.lineno());

return (false);

}catch (IOException e) {
System.err.println(" *** IO error detected ***");

System.err.println("*** On line number " +
inStreamTokenizer.lineno()) ;
return (false);

}// end of main production

/**

* operatorProduction, parse the methods of the objects
* @exception, automCOdeGenException and IOException
* @return void
*/
private void operatorProduction() throws automCodeGenException,
IOException({
int currentProduction =0;
String stempl;

String stemp2;
methodDefinition currentMethod = new methodDefinition("");

while (true) {
switch (currentProduction) {

115

case 0 : stempl = new String (getNextToken (false)) ;
currentMethod = mainServerClass.addMethod (stempl) ;
currentProduction = 10;
break;

case 10: getNextToken (SPECIFICATION) ;
currentProduction =20;
break;

case 20: stempl = new String (getNextToken (false));
if (stempl.compareTo (reserveWords [INPUT]) == 0){
stempl = new String (getNextToken(false));
stemp2 = new String (getNextToken (false));
currentMethod.addParameter
(definition.IN, stempl, stemp2) ;
Jelse if (stempl.compareTo (reserveWords [OUTPUT]) ==

// the first output type will be the method return
// type .
stempl = new String (getNextToken (false));
stemp2 = new String (getNextToken (false));
currentMethod.setRetType (stemp2) ;
currentProduction =30;
} else if (stempl.compareTo (reserveWords [STATES])
== 0){
// the state type must not be of primitive type
stempl = new String (getNextToken (false));
stemp2 = new String (getNextToken(false));
if (variableDefinition.javaType (stemp2) !=
definition.SUSERTYPE) {
throw new automCodeGenException (
automCodeGenException.ParserStateError) ;

}

currentMethod.addParameter(definition.INOUT,stempl,
stemp2) ;
lelse if (stempl.compareTo (reserveWords [END]) == 0) {
currentProduction =40;

break;
case 30: stempl = new String (getNextToken (false));
if (stempl.compareTo (reserveWords [INPUT]) == 0) {
stempl = new String (getNextToken(false));
stemp2 = new String (getNextToken (false));
currentMethod.addParameter (definition.IN, stempl,
stemp2) ;
}else if (stempl.compareTo (reserveWords [OUTPUT]) ==
0) {
// the first output type will be the method return
// type
stempl = new String (getNextToken{false))
stemp2 = new String (getNextToken (false))
if (variableDefinition.javaType (stemp2) !
definition.SUSERTYPE) {
throw new automCodeGenException (
automCodeGenException.ParserStateError) ;

H oSe ~

116

currentMethod.addParameter (definition.INOUT, stempl,
stemp2) ;
} else if (stemp?.compareTo(reserveWords[STATES])
== O)
// the state type must not be of primitive type
stempl = new String (getNextToken (false));
stemp2 = new String (getNextToken (false)) ;
if (variableDefinition.javaType (stemp2) !=
definition.SUSERTYPE) {
throw new automCodeGenException (
automCodeGenException.ParserStateError) ;

}

currentMethod.addParameter (definition.INOUT, stempl,
stemp2) ;
lelse if (stempl.compareTo (reserveWords [END]) == 0){
currentProduction =40;

}

break;

case 40: getNextToken (IMPLEMENTATION) ;
currentProduction = 50;
break;
case 50: stempl = new String(getNextToken (false));
if (stempl.compareTo (reserveWords [SPACE]) == 0)
spaceMethodProduction (currentMethod) ;
}Jelse if (stempl.compareTo (reserveWords [END]) == 0){
return;
lelse {
throw new automCodeGenException (
} automCodeGenException.ParserSyntaxError) ;

break;
}// end of switch
}// end of while
}// end of operatorProduction

private void spaceMethodProduction(methodDefinition currentMethod)
throws automCodeGenException, IOException{
int currentProduction =0;
String stempl;
String stemp2;

while (true) {
switch (currentProduction) {
case 0: getNextToken (PROPERTY) ;
currentProduction =10;

break;
case 10: stempl = new String(getNextToken (false));
if (stempl.compareTo (reserveWords [SPACEMODE]) == 0) {

// space mode
stemp2 = new String(getNextToken (false));

currentMethod.setReadProperty (definition.spaceTranslate (stemp2));

currentProduction = 20;
}else if (stempl.compareTo (reserveWords [TRANSACTION])

117

== 0){
// trasaction mode Yes, No
stemp2 = new String(getNextToken (false));

currentMethod.setTransaction(definition.spaceTranslate (stemp2)) ;
currentProduction =20;
}else if
(stempl.compareTo (reserveWords [TRANSACTIONTIME])
== 0)
// trasaction time in ms
long itemp = getNumNextToken (false) ;
currentMethod.setTransactionTime (itemp) ;
currentProduction =20;
}else {
throw new automCodeGenException (
automCodeGenException.ParserSyntaxError) ;

break;

case 20: stempl = new String(getNextToken (false));

if (stempl.compareTo (reserveWords [PROPERTY]) == 0) {
currentProduction = 10;

}else if (stempl.compareTo (reserveWords [END]) == 0) {
// End of IMPLEMENTATION
return;

}else {
throw new automCodeGenException (

automCodeGenException.ParserSyntaxError) ;

}// end of while
}// end of method
private void spaceProduction() throws automCodeGenException,
IOException{
int currentProduction =0;
String stempl;
String stemp2;
spaceProperties objectSP;

objectSP = mainServerClass.getProperties();

while (true){
switch (currentProduction) {
case 0: getNextToken (PROPERTY) ;
currentProduction =10;

break;
case 10: stempl = new String(getNextToken (false));
if (stempl.compareTo (reserveWords [SPACENAME]) == 0) {

// space name
objectSP.setName (getNextToken (false)) ;
currentProduction = 20;
}else if (stempl.compareTo (reserveWords [OWNERSHIP])
== 0){
// ownership mode
objectSP.setOwnership(definition.spaceTranslate

118

(getNextToken (false))) ;
currentProduction = 20;
lelse if (stempl.compareTo (reserveWords [SECURITY]) ==

0) {
// security mode
objectSP.setSecurity(definition.spaceTranslate
(getNextToken (false))) ; :
currentProduction = 20;
} else if (stempl.compareTo (reserveWords [LEASE]) ==
0){

// lease mode in ms
long itemp = (long) getNumNextToken (false);
objectSP.setLease (itemp) ;
currentProduction = 20;
}else if (stempl.compareTo (reserveWords [CLONE]) == 0) {
// clone mode
objectSP.setClone (definition.spaceTranslate
(getNextToken (false))) ;
currentProduction = 20;
{ }else if (stempl.compareTo (reserveWords [NOTIFY]) ==
0)
// notify mode
objectSP.setNotify(definition.spaceTranslate
(getNextToken (false))) ;
currentProduction = 20;
}else {
throw new automCodeGenException {
automCodeGenException.ParserSyntaxError) ;

case 20: stempl = new String(getNextToken (false));

if (stempl.compareTo (reserveWords [PROPERTY]) == 0) {
currentProduction = 10;

}else if (stempl.compareTo (reserveWords [END]) == 0){
// End of IMPLEMENTATION
return;

}else {
throw new automCodeGenException (

automCodeGenException. ParserSyntaxError) ;

}
}// end of while
}// end of method

public Vector getDistObject () {
return distObject;
!

}// end of class

APPBUILDER.JAVA

[] ==

// Filename : appBuilder.java

119

// Date : 10 Jan 00
// Compiler : jdk 1.2 or J++
e

package psdl2java.generator;

/**
*
@author Ngom Cheng
@version 1.0
appBuilder, generates all the interface wrapper
codes.

* % * ¥

*/

import java.util.Vector;

import java.util.Enumeration;
import java.io.¥*;

import java.util.StringTokenizer;

// psdl2java classes
import psdl2java.global.*;
import psdl2java.parser.*;

public class appBuilder extends Object {

/**
* distObj, list of objects
*/

private Vector distObj;

/**
* aicgToken[], array of reserve words
*/

private String aicgTokenl|];

/**
* aicgField[], array of in String words
*/

private String aicgFieldl[];

/**
* sP, space properties
*/
private spaceProperties sP;
/**
* cDef, main class definition
*/
private classDefinition cDef;
/**
* destDir, destination directory
*/
private String destDir;
/**

* dataDir, data directory

120

*/

private String dataDir;

/**

* checkAgain, retry boolean

*

/
private boolean checkAgain = false;
/**

* gtatic constants of the tokens
*

/
private static final int USEROBJECT =0;
private static final int USEREXT = 1;
private static final int USERENTRY =2;
private static final int USERCLIENT = 3;
private static final int USERSERVER = 4;
private static final int USEROBJID = 5;
private static final int USEROBJIDGETS = 6;
private static final int DATE = 7;
private static final int LOCALOBJNAME = 8;
private static final int SPACENAME = 9;
private static final int PACKAGENAME = 10;
private static final int LOCALSPACENAME = 11;

private static final int USERMETHOD = 12;
private static final int USERDECLARATION = 13;
private static final int USERPARAMETER = 14;

private static final int ENTRYDECLARATION = 15;
private static final int ENTRYASSIGN = 16;
private static final int EXTDECLARATION = 17;
private static final int AUTOGETID = 18;
private static final int AUTOSETID 19;
private static final int EXTIDNULL = 20;

private static final int CLIENTCONSTRUCTOR = 21;
private static final int CLIENTCONSTRUCTASS1 = 22;
private static final int CLIENTCONSTRUCTASS2 = 23;

private static final int CLIENTMETHOD =24;
private static final int SERVERCONSTRUCTOR =25;
private static final int SERVERMETHOD =26;
private static final int SETGETID = 27;
private static final int USERPARAMETERWC = 28;
private static final int EVENTGETID = 29;
private static final int DISTOBJGETID = 30;

private static final char DELIMITER = '%';
/**
* Constructor Creates new appBuilder
*/
public appBuilder (psdlReader pReader, String destDir, String
datapir) {
//

this.destDir destDir;

this.dataDir = databir;
definition.DEFAULTPACKAGENAME = this.destDir;
// initialise the tokenfield

aicgToken = new String[definition.MAXTOKEN] ;

121

aicgField = new Stringl[definition.MAXTOKEN] ;

aicgToken [USEROBJECT] = new String("-userobject™);
aicgToken [USEREXT] = new String("-userext");

aicgToken [USERENTRY] = new String("-userentry");
aicgToken [USERCLIENT] new String("-userclient");
aicgToken [USERSERVER] new String("-userserver") ;
aicgToken [USEROBJID] = new String("-userobjid");
aicgToken [USEROBJIDGETS] = new String("-userobjidgets");
aicgToken [DATE] = new String("-date");

aicgToken {LOCALOBJNAME] = new String("-localobjname");
aicgToken [SPACENAME] = new String("-spacename");
aicgToken [PACKAGENAME] = new String("-packagename") ;
aicgToken [LOCALSPACENAME] = new String("-localspacename");

//

aicgToken [USERDECLARATION] = new String("-userdeclaration") ;

aicgToken [USERMETHOD] = new String("-usermethod") ;

aicgToken [ENTRYDECLARATION] = new String("-entrydeclaration");

aicgToken [EXTDECLARATION] = new String("-extdeclaration");

aicgToken [USERPARAMETER] = new String("-userparameter");

aicgToken [USERPARAMETERWC] = new String("-userparameterwc");

aicgToken [USERDECLARATION] = new String("-userdeclaration");

aicgToken [ENTRYASSIGN] = new String("-entryassign");

aicgToken [AUTOGETID] new String("-autogetid");

aicgToken [AUTOSETID] new String("-autosetid");

aicgToken [EXTIDNULL] new String("-extidnull");

aicgToken [CLIENTCONSTRUCTOR] = new String("-clientconstructor");

aicgToken [CLIENTCONSTRUCTASS1] = new String("-
clientconstructassi");

aicgToken [CLIENTCONSTRUCTASS2]
clientconstructass2");

aicgToken [CLIENTMETHOD] = new String("-clientmethod");

aicgToken [SERVERMETHOD] = new String("-servermethod");

aicgToken [SERVERCONSTRUCTOR] = new String("-sexrverconstructor");

aicgToken [SETGETID] = new String("-setgetid");

aicgToken [EVENTGETID] = new String("-eventgetid");

aicgToken [DISTOBJGETID] = new String("-distobjgetid");

//

aicgField [LOCALOBJNAME] = new String("inObj");

aicgField [PACKAGENAME] = new
String(definition.DEFAULTPACKAGENAME) ;

aicgField [DATE] = new String("01/07/00");

aicgField [SPACENAME] = new String(definition.DEFAULTSPACENAME) ;

new String("-

// create the package
createPackage() ;
// create the fixed classes
buildFixedClasses () ;
// get the distributed objects from parser
distObj = pReader.getDistObject () ;
// get a list out
Enumeration enum = distObj.elements();
while (enum.hasMoreElements()) {
// get the distributed class object
cDef = (classDefinition) enum.nextElement () ;
if (cDef.getObjectState()) {

122

// it a aicg object

// build the name

aicgField [USEROBJECT] = new String(cDef.getName());
aicgField [USEREXT] = new String(aicgField[0] + "Ext");
aicgField [USERENTRY] = new String(aicgField[0] + "Entry");
aicgField [USERCLIENT] = new String(aicgField[1] + "Client");
aicgField [USERSERVER] = new String(aicgField[1l] + "Server");

// get the space properties

sP = cDef.getProperties();

aicgField [LOCALSPACENAME] = sP.getName();
// process the information
processDistObj () ;

// build the distributed object
buildDistObj () ;

}

}// end of while

}
/**

* createPackage, create a directory for the interface wrapper
* @return void
*/

public void createPackage () {

// create the files for that application
File name = new File(aicgField [PACKAGENAME]) ;

System.out.println("Phase 2 : Generating...");
if (name.exists()) {
System.out.println(" : OutputDirectory Exists");
System.out.println(" : No new directory created ");
}else {
try{
name.mkdir () ;
System.out.println(" : " + name.getName () + "

created") ;
}catch (Exception e){
System.err.println (" : Cannot create directory...
exiting");
System.exit (-1);
}
}

}
/**

* buildClass, convert the template data into interface wrapper
* @param inName, name of the template
* @param outName, name of the output file
* @return void
*/
public void buildClass (String inName, String outName) {
PrintWriter output;
BufferedReader input;
String sTemp, sTemp2;

123

StringTokenizer sTokenizer;

// open the file entryAICG.java.data

try(
input = new BufferedReader (new FileReader (inName)) ;
output = new PrintWriter (new BufferedWriter (new

FileWriter (aicgField [PACKAGENAME] + outName)));
try{
// copy the input to a temporary String

while ((sTemp = input.readLine()) != null){
sTemp = convert (sTemp) ;
while (checkAgain) {
checkAgain = false;
sTemp = convert (sTemp) ;

‘output.println(sTemp);

}catch (IOException el) {
System.err.println("Error in creating " + inName);
System.exit (1) ;

output.close() ;

input.close();

}catch (IOException e) {
System.err.println("Error in creating " + inName) ;
System.exit (1) ;

}

/**
* buildFixedClass, build all the AICG fixed classes
* @return void
*/

public void buildFixedClasses () {

// open the file globalAICG.java.data
buildClass(dataDir + "\\globalAICG.java.data",
"\\globalAICG.java") ;

// open the file entryAICG.java.data .
buildClass(dataDir + "\\entryAICG.java.data",
"\\entryAICG.java") ;

// open the file exceptionAICG.java.data
buildClass(dataDir + "\\exceptionAICG.java.data”
"\\exceptionAICG.java") ;
// open the file eventAICGID.java.data
buildClass(dataDir + "\\eventAICGID.java.data",
"\\eventAICGID.java") ;

// open the file notifyAICGID.java.data
buildClass(dataDir + "\\notifyAICG.java.data",
"\\notifyAICG.java") ;

// open the file spaceAICGID.java.data
buildClass(dataDir + "\\spaceAICG.java.data",
"\\spaceAICG.java");

// open the file transactionAICG.java.data
buildClass(dataDir + "\\transactionAICG.java.data",
"\\transactionAICG.java");

// open the file spaceAICGID.java.data
buildClass(dataDir + "\\transactionManagerAICG.java.data",

124

"\\transactionManagerAICG.java") ;

}

/**
* cleasAICGField, reset the AICG Fields
* @return void
*/
public void clearAICGField() {
aicgField [USERDECLARATION] = new String();
aicgField [USEROBJID] = new String();
aicgField [ENTRYDECLARATION] = new String();
aicgField [EXTDECLARATION] = new String();
aicgField [USERPARAMETER] = new String();
aicgField [ENTRYASSIGN] = new String();
aicgField [AUTOGETID] = new String();
aicgField [AUTOSETID] = new String();
aicgField [SETGETID] = new String();
aicgField [EXTIDNULL] = new String();
aicgField [CLIENTCONSTRUCTASS1] = new String();
aicgField [CLIENTCONSTRUCTASS2] = new String();
aicgField [USERPARAMETERWC] = new String();
aicgField [EVENTGETID] = new String();

}
/**
* processDistObj, gather information of the distributed object
* for use in creating the interface
* @return void
*/
public void processDistObj () {
variableDefinition vD;
methodDefinition mD;
Enumeration enum;
Vector iDs;
int counter = 0;
// clear the aicgField to empty
clearRAICGField () ;
iDs = cDef.getIDs();
enum = iDs.elements();
while (enum.hasMoreElements ()) {
vD = (variableDefinition) enum.nextElement () ;
if (counter ==0) {
aicgField [USERDECLARATION] = new String("private " +
vD.getJavaObject () + " " + vD.getID() + ";\n");
aicgField [USEROBJID] = new
String(vD.getClassID () .getAICGName ()
+ n’ n)'.
aicgField [ENTRYDECLARATION] = new String("public " +
vD.getJavaObject () +
n v 4 yD.getClassID() .getAICGName () + ";\n");
aicgField [EXTDECLARATION] = new String("protected " +
vD.getJavaObject() + " " +
vD.getClassID() .getAICGName () + ";\n");
aicgField [USERPARAMETER] = new String(vD.getJavaObject() +
"t 4 yD.getClassID() .getAICGName());
aicgField [USERPARAMETERWC] = new String(vD.getJavaObject() +
n n 4 yD.getClassID() .getAICGName() + ", ");

125

aicgField [ENTRYASSIGN] = new String("this." +
vD.getClassID() .getAICGName () + " = " +
vD.getClassID() .getAICGName () + ";\n");

aicgField [AUTOGETID] = new String("public synchronized "
+vD.getJavaObject () + ' ' + "get" +
vD.getClassID() .getAICGName () + "()\n" +

" {\n return " + vD.getClassID().getAICGName ()

";\n }\n");
aicgField [DISTOBJGETID] = new String("public synchronized "
+vD.getJavaObject() + ' ' + "get" +
vD.getClassID() .getAICGName () + "()\n" +
* {\n return " + vD.getID() + ";\n }\n");
aicgField [AUTOSETID] = new String("public synchronized void "
-+
"set" + vD.getClassID().getAICGName() + "(" +
vD.getJavaObject() + " inID)\n" + " {\n "oy
vD.getClassID() .getAICGName() + " = inID;\n }\n");
aicgField [SETGETID] = new String(" set" +

vD.getClassID() .getAICGName () + "(ddata.get" +
vD.getClassID() .getAICGName () + "());\n");
aicgField [EXTIDNULL] = new
String (vD.getClassID() .getAICGName ()

+ " = null;\n");
aicgField [CLIENTCONSTRUCTASS1] = new String(" "oy
vD.getJavaObject() + ' ' + "temp" +
vD.getClassID() .getAICGName() + " = " 4
vD.getClassID() .getAICGName () + " ;\n");

aicgField [CLIENTCONSTRUCTASS2] = new String(", temp" +
vD.getClassID() .getAICGName ()) ;

aicgField [EVENTGETID] = new String("indata.get" +
vD.getClassID() .getAICGName () + "(), ");

lelse {
aicgField [USERDECLARATION] = new
String (aicgField [USERDECLARATION] +

" private " + vD.getJavaObject() + " " +
vD.getID()
+ u’.\nu);
aicgField [USEROBJID] = new String(aicgField [USEROBJID]
+ vD.getClassID() .getAICGName() + ", ");

aicgField [ENTRYDECLARATION] = new
String(aicgField [ENTRYDECLARATION] +
" public " + vD.getJavaObject () +
" " + vD.getClassID() .getAICGName () + ";\n");
aicgField [EXTDECLARATION] = new
String(aicgField [EXTDECLARATION]
+ " protected " + vD.getJavaObject() +
" " + vD.getClassID() .getAICGName () + ";\n");
aicgField [USERPARAMETER] = new
String(aicgField [USERPARAMETER] +
", " + vD.getJavaObject() +
" " + vD.getClassID() .getAICGName ()) ;
aicgField [USERPARAMETERWC] = new
String (aicgField [USERPARAMETERWC]
+ vD.getJavaObject () +
" " + vD.getClassID() .getAICGName() + ", ");

126

aicgField [ENTRYASSIGN] = new String(aicgField [ENTRYASSIGN] +
i this." + vD.getClassID() .getAICGName () +
" = " 4 vD.getClassID() .getAICGName () + ";\n");
aicgField [AUTOGETID] = new String(aicgField [AUTOGETID] +
" public synchronized " +vD.getJavaObject() + ' '
"get" + vD.getClassID().getAICGName () + "()\n" +
" {\n return " + vD.getClassID() .getAICGName () +
";\n }\n");
aicgField [DISTOBJGETID] = new String(aicgField [DISTOBJGETID] +
"public synchronized " +vD.getJavaObject() + ' ' +
"get" + vD.getClassID().getAICGName() + "{()\n" +
" {\n return " + vD.getID() + ";\n }\n");
aicgField [AUTOSETID] = new String(aicgField [AUTOSETID] +
" public synchronized void " + "set" +
vD.getClassID() .getAICGName () + "(" +
vD.getJavaObject () + " inID)\n" +
» {\n " + vD.getClassID() .getAICGName() + " =
inID;\n }\n");
aicgField [SETGETID] = new String(aicgField [SETGETID] +
" set" + vD.getClassID() .getAICGName() +
"(ddata.get" + vD.getClassID() .getAICGName () +
"()):\n");
aicgField [EXTIDNULL] = new String(aicgField [EXTIDNULL] +
R " 4+ vD.getClassID() .getAICGName() + " =
null;\n");
aicgField [CLIENTCONSTRUCTASS1] = new String(
aicgField [CLIENTCONSTRUCTASS1] + ™ "o+
vD.getJavaObject() + ' ' + "temp" +
vD.getClassID() .getAICGName() + " = "
vD.getClassID() .getAICGName () + " ;\n"
aicgField [CLIENTCONSTRUCTASS2] = new
String(aicgField [CLIENTCONSTRUCTASS2] +
", temp" + vD.getClassID() .getAICGName()) ;
aicgField [EVENTGETID] = new String(aicgField [EVENTGETID] +
"indata.get" + vD.getClassID() .getAICGName() + " (),

");

+
) ;

}

counter ++;
} //end of while

// process the methods
iDs = cDef.getMethods() ;
enum= iDs.elements() ;
aicgField [CLIENTMETHOD] = new String();
aicgField [SERVERMETHOD] = new String();
String withcomma;
counter = 0;
while (enum.hasMoreElements ()) {
mD = (methodDefinition) enum.nextElement();
// constructor for client
if (mD.getReadProperty() == definition.SPCONSTRUCTOR) {
aicgField [CLIENTCONSTRUCTOR] = new String("public " +
mD.getRetType() + " " + aicgField[USERCLIENT] + "("
+ aicgField [USERPARAMETER] +
") throws exceptionAICG{\n" + " super () ;\n" +

127

object\n"

"+

" int retry = globalAICG.AICGDEFAULTRETRY;\n" +
" boolean trxSucc =false;\n" +
"aicgField [CLIENTCONSTRUCTASS1] +

" while (retry !=0){\n" + " try{\n" +

" // create atemplate to seach for the

+ " " + aicgField[USERENTRY] +
" template = new " + aicgField|[USERENTRY] +
" (globalAICG.AICGIDENTIFIER " +
aicgField [CLIENTCONSTRUCTASS2] +
", null);\n" +
" distObj = (" + aicgField [USERENTRY] +
") space.read(template,null,\n" +
" globalAICG.AICGDEFAULTWAITTIME) ; \n" +
" " + aicgField [USEROBJECT] + " ddata = (" +
aicgField [USEROBJECT] +
") distObj.getObject();\n" +
i " + aicgField [SETGETID] +
" retry = 0;\n" +
" trxSucc = true;\n" +
" }catch (Exception e){\n" +
" System.err.println(\"retrying to find
object\") ;\n" +
" retry--;\n" +
n }\nn +
" }// end of while\n" +
" if (ttrxSucec) {\n" +
i throw new exceptionAICG _
(3§ceptionAICG.ObjectNotFoundException);\n" +
" \nn +

n }\nu);

//server constructor
aicgField [SERVERCONSTRUCTOR] = new String("public " +
mD.getRetType() + " " +
aicgField [USERSERVER] +
"(" + mD.getParameterString() +
") throws exceptionAICG{\n" +
" super () ;\n" + '
" // create the template \n" +
" Transaction trn = null;\n" +

n try {\nn +
" trn = trnMgr.getDefaultTransaction() ;\n" +
" try{\n" +

" " + aicgField[USEROBJECT] + " ddata = new

aicgField [USEROBJECT] + '(' +

mD.getParameterName () + ");\n" +

" " + aicgField [SETGETID] +

" " + aicgField [USERENTRY] +" template = new

aicgField [USERENTRY] +
" (globalAICG.AICGIDENTIFIER, " +
aicgField [USEROBJID] + "null);\n"

" //check if the distobj exit\n" +
" if (space.read(template, trn,

128

JavaSpace.NO WAIT) == null){\n" +
" distObj = new " + aicgField [USERENTRY] +
" (globalAICG.AICGIDENTIFIER, " +
aicgField [USEROBJID] + "ddata);\n" +
"o, space.write(distObj, trm,
globalAICG.AICGLEASETIME);\n" +
" trn.commit () ;\n" +
" lelse{ \n" +
u // throws an exception\n" +
" trn.abort () ;\n" +
" throw new
exceptionAICG (
exceptionAICG.ObjectExistException) ;\n" +
" }\nu +
" }Jcatch (exceptionAICG e) {\n" +
" trn.abort () ;\n" +
" throw new
exceptionAICG (e.getErrorCode()) ;\n"+
" }catch (Exception e) {\n" +
" trn.abort () ;\n" +
n e.printStackTrace() ;\n" +
" throw new exceptionAICG(
exceptionAICG.SystemExceptionCode) ; \n" +
n }\nn +
" }catch (exceptionAICG e) {\n" +
" throw new exceptionAICG(e.getErrorCode());\n"

+
" }catch (Exception e) {\n" +
" throw new exceptionAICG (
exceptionAICG.SystemExceptionCode) ;\n" +
" }\nn +
" }\n");
Jelse if (mD.getReadProperty() == definition.SPREAD) {
aicgField [CLIENTMETHOD] = new String(aicgField [CLIENTMETHOD]
+
" public " + mD.getRetType() + " " +
mD.getName () + "(" +
mD.getParameterString() + ") throws
exceptionAICG {\n" +
" " + aicgField [USERENTRY] + "
msgTemplate = new " +
aicgField [USERENTRY] +
" (globalAICG.AICGIDENTIFIER, " +
aicgField [USEROBJID] + "null);\n\n" +
" try{\n" +
" distObj = (" +
aicgField [USERENTRY] + ")\n" +
" space.read (msgTemplate,
null,
globalAICG.AICGDEFAULTWAITTIME);\n“ +
" if (distObj==null) {\n" +
" // object nolonger exist \n"
+

v throw new exceptionAICG (

129

exceptionAICG.ObjectNotFoundException) ; \n"

+ M }\nu +
" return distObj.data." +
mD.getName () + ' (' + mD.getParameterName ()
+ ");\n" +

" }catch (exceptionAICG ex) {\n" +

" throw new exceptionAICG(
exceptionAICG.ObjectNotFoundException);\n"
+ 7 }catch (Exception e) {\n " +

" throw new exceptionAICG (
exceptionAICG.SystemExceptionCode) ; \n" +

n }\n" +

" }\n\n");

Jelse {

aicgField [SERVERMETHOD] = new String(aicgField[SERVERMETHOD]

" public " + mD.getRetType() + " " 4
mD.getName () + "(" +
mD.getParameterString() + ") throws
exceptionAICG {\n" +
" int retry =
globalAICG.AICGDEFAULTRETRY; \n" +
" boolean trxSucc =false;\n" +
" " + aicgField [USERENTRY] + "
msgTemplate =\n" +
" new " + aicgField [USERENTRY]

"(globalAICG.AICGIDENTIFIER, "oy
aicgField [USEROBJID] + "null);\n" +
n Transaction trn = null;\n\n" +
" while (retry !=0){\n" +
" try {\nu +
" trn = trnMgr.createTransaction
(globalAICG.USERTXNLEASE) ; \n" +
" try{\n" +
" distObj = (" +
aicgField [USERENTRY] + ")\n" +
" space.take (msgTemplate,
trn,
Long.MAX VALUE) ;\n" +
" // called the actual
method\n" +
" distObj.data." +
mD.getName () +
"(' + mD.getParameterName() + ");\n" +
" space.write (distObj,
trn,globalAICG.AICGLEASETIME);\n" +
" trn.commit () ;\n" +
" retxry = 0;\n" +
" trxSucc = true;\n" +
" }catch (Exception e) {\n" +
" trn.abort ();\n" +
" retry --;\n" +

System.err.println (\"Exception
level 1: retrying\");\n" +

130

n }\nn +
" }catch (Exception e) {\n" +
" retry--;\n" +
" System.err.println(\"Exception
level 2: retrying\");\n" +
n }\n" +
i }// end of while\n" +
" if (!trxSucc) {\n" +
" throw new exceptionAICG
(exceptionAICG. SystemExceptionCode) ;
\nu + " }\nn + " }\nu);
}

// others
if (counter ==0){
aicgField [USERMETHOD] = new String("public " +
mD.getRetType () +
. w v 4 mD.getName() + "(" +
mD.getParameterString() + ")" +

» {\n\n\n }\n\n");

}else {
aicgField [USERMETHOD] = new String(aicgField[USERMETHOD] +
" public " + mD.getRetType() + " " +
mD.getName() + "(" +
mD.getParameterString() + ") " +
" {\n\n\n J\n\n");
}
counter ++;
}
}
/**

* buildDistObj, build the rest of the interface wrappers
* @return void
*/

public void buildDistObj () {

PrintWriter output;
BufferedReader input;
String sTemp, sTemp2;
StringTokenizer sTokenizer;
// build the distributed object
buildclass (dataDir + "\\distobj.java.data",
"\\" + aicgField[USEROBJECT] + ".java");
// build the Entry object
buildClass (dataDir + "\\distobjentry.java.data",
"\\" + aicgField[USERENTRY] + ".java");
// build the Ext object
buildClass (dataDir + "\\distobjext.java.data",
"\\" + aicgField[USEREXT] + ".java");
// build the ExtClient object
buildClass (dataDir + "\\distobjextclient.java.data",
"\\" + aicgField[USERCLIENT] + ".java");
// build the ExtServer object
buildClass (dataDir + "\\distobjextserver.java.data",

131

"\\" + aicgField [USERSERVER] + ".java");

// build the eventAICGHandler object
buildClass(dataDir + "\\eventAICGHandler.java.data",
"\\eventAICGHandler.java") ;
System.out.println (" : Interface Generating Completed") ;

}

/**
* convert, parse the template statement into codes
* @param inString, template statement
* @return String, output statement
*/

public String convert (String inString) {

int len = 0;
int endLen = 0;
char cTemp;
String sTemp;

String retString = new String (inString);

try{
while (len < retString.length()) {
if (retString.charAt (len) == DELIMITER) {
if (inString.charAt(len + 1) == '-'){

len = len + 1;
endLen = len + 1;
while(retString.charAt (endLen) != DELIMITER) {
endLen ++;
b
sTemp new String(retString.substring(len,endLen));
sTemp replace (sTemp) ;
if (endLen < retString.length()-1){
retString = new String(retString.substring(0, len-1) +
sTemp + retString.substring(endLen + 1,
retString.length()));

}else {

retString =new String(retString.substring(o, len-1)
+ sTemp) ;

}
checkAgain = true;
return retString;
}
len++;

}catch (Exception e){
System.err.println("out of Bound error");
System.exit (1) ;

return retString;

/**

132

* replace, check and replace the token with the respectlve string
* @param inString, token
* @return String, output codes for the token
*/
public String replace(String inString) {

for (int i = 0; i< definition.MAXFIX; i++){
if (inString.compareTo(aicgTokenfi]) ==0)
return aicgField(i];

{

}
}

System.err.println("Token not found " + inString);

System.exit (-1);
return inString;

133

THIS PAGE IS INTENTIONALLY LEFT BLANK

134

APPENDIX D. SETTING UP THE JAVASPACE ENVIRONMENT

EXTRACTED FROM THE NUTS AND BOLTS OF COMPILING AND RUNNING
JAVASPACES PROGRAMS BY SUSANNE HUPFER

Downloading the Software Packages

Compiling and running JavaSpaces programs requires the
installation of three separate packages from Sun
Microsystems--Java, Jini, and JavaSpaces software.

e If you don't already have the Java™ 2 SDK, Standard
Edition, v 1.2.x installed on your machine, download it
from Sun's Java 2 SDK
<http://www.java.sun.com/products/jdk/1.2/>. The Jini
and JavaSpaces software require version 1.2.x of the
Java Development Kit, because they make use of RMI
features that are not available in version 1.1 of the
JDK.

e Next you'll need to download the Jini™ Technology
Starter Kit, Version 1.0.1, from the Jini System
Software 1.0 Product Offerings
<http://developer.java.sun. com/developer/products/j1n1/
product .offerings.html>. (Note that, as this article is
being written, Version 1.0.1 is the latest release, and
you'll therefore see the number "1.0.1" appearing in
the commands; if there is a newer release when you read
this article, you should substitute the newer version
numbers as appropriate.) You'll have to click on the
link "Register and accept the SCSL to access software
downloads" and step through a free registration process
in order to download the kit. The file you download is
called jini1 0 1.zip. The Jini Technology Starter Kit
contains Jini interfaces and classes, along with a
number of services. It also contains the complete set
of Sun Microsystems Jini specifications, documentation,
and example code.

e Last, download the JavaSpaces™ Technology Kit (JSTK),
Version 1.0.1, from the Jini System Software 1.0
Product Offerings
<http://developer.java.sun.com/developer/products/jini/
product ..offerings.html>. Again, you'll need to click on
the 1link "Register and accept the SCSL to access

135

software downloads." The file you download is called
jstkl 0 _1.zip; it contains the Sun Microsystems
implementation of the JavaSpaces technology, along with
documentation and example code.

Installing the Packages

Now that you've downloaded the three necessary software
packages, you're ready to unpack and install them.
First, if you don't already have Java™ 2 SDK™ version
1.2.x installed, follow the installation instructions
that come with the package to install it on your
platform. This article assumes that Java software is
installed in c:\jdk1.2.x\ on Windows platforms and
/jdk1l.2.x/ on Solaris platforms. '

Next, you need to install the Jini Technology Starter
Kit and then the JavaSpaces Technology Kit (JSTK). Note
that the current packaging of the JSTK requires that
the Jini software be installed first, because the
software packages build upon one another; if this order
is not followed, the installation and API documentation
will not be correct. Here are the steps in the correct
order:

Extract the files in jinii1 0 _1.zip to your chosen
destination directory, using a ZIP extraction utility.
For example, on the Windows platform, use a utility
such as WinZip and specify that the software
distribution should extract to a certain destination
directory. If you specify c:\ as the destination, you
should now have a folder c:\jinii 0_1 that contains the
Jini files. On the Solaris platform, copy the file
jinil_0_1.zip to a destination directory, cd to that
directory, and then use a ZIP extraction program, for

example jar -xvf jinil 0_1.zip. This document assumes that

Jini software resides in c:\jini1 0 1\ on Windows
platforms and /jinil_o0_1/ on Solaris platforms.

Extract the files in jstkl 0 1.zip to the same
destination directory. This results in some files being
overwritten, so when asked whether you wish to replace
any of the existing files, answer "yes".

136

Configuring Your Machine Environment

Now that you have unpacked the software, you still need to
do some configuration. The file C:\jinil_0_1\index.html
(/3inil_o0_1/index.html on Solaris) contains pointers to release
notes and other documentation (much of which is found in the
doc folder). You may want to read over the release notes for
any information not covered in this document; in particular,
the sections covering "Known Bugs" or "Known Issues" can be
a useful starting point if you’re experiencing a problem.

Make sure that the path to the basic tools provided by the
Java Development Kit (for example, java, javac, and
appletviewer) is specified in your executable path. For
instance, on Windows platforms, you need to set the PATH
environment variable as follows:

set PATH=%PATH%;C:\jdkl.2.x\bin;

As for your CLASSPATH environment variable, we recommend that
you do not modify it. To run the standard run-time Jini
services (see Starting the Required Run-time Services), no
special classpath is needed. When you build and run your own
JavaSpaces code, we recommend passing the required JAR files
on the command line, rather than modifying the classpath or
placing JAR files in the Java extensions directory (we'll
explain further in Compiling JavaSpaces Programs) .

Starting the Required Run-time Services

JavaSpaces applications interact with one or more spaces, SO
to run a JavaSpaces application you'll need to have at least
one JavaSpaces service running. But this itself depends on
having a Jini infrastructure in place, and before you start
a JavaSpaces service, you need to start these other run-time
services:

e An HTTP server, which is used to download code to
JavaSpaces clients.

e An RMI Activation Daemon, which takes care of managing
the states of services, for instance restarting crashed
services, or deactivating and reactivating services
based on whether they're being used or not (these
responsibilities are described in more detail below).

137

® A Lookup Service, which allows clients to look up and
find the Jini services that are currently available on
the local network.

e A Transaction Manager, which is needed if vyour
JavaSpaces applications make use of transactions.

Once these services are up and running, you can start:

e A JavaSpaces Service.

When building and testing JavaSpaces applications, you'll
most likely run these services and your JavaSpaces client
programs on a single desktop machine, but when deploying
your final code, you'll most 1likely run them in a
multimachine environment. So, let's step through the details
of starting each of these services, paying attention along
the way to avoiding pitfalls that could occur as you move
your code from testing into deployment.

Starting an HTTP Server

Web servers are used for delivering class code to Jini
clients. Let's take a brief look at how this works.

Whenever you run a JavaSpaces application that needs to
serve classes to clients (for example, one that writes

entries into a JavaSpace), vyou need to include
"codebase" information on the command line (as you'll
see in Running JavaSpaces Programs). The codebase

specifies locations--usually URLS--from which a client
can download the class files. Whenever your code writes
entry objects into the space, the entries get annotated
with that information. When a client of the space later
removes or reads an entry object from the space, the
entry's codebase annotation tells the client where to
look for the class code, which is downloaded from an
HTTP server (if the class doesn’t already exist in the
classpath) . Typically you'll run a web server on each
machine that needs to export code.

Any web server that's capable of serving documents can
do the job, but for convenience, the Jini distribution
provides a simple HTTP server in the tools.jar package.
Here is the command to start the supplied HTTP server

138

(where optional parameters are shown in square
brackets) :
java -jar C:\jinil_0_1\lib\tools.jar

[-port port-number]

[-dir document-root-dir]

[-verbose]

For example, on the Windows platform, you might issue
this command:
java -jar C:\jinil_0_1\lib\tools.jar

-port 8081

-dir c:\jini1l_o_1\1ib

-verbose

On Solaris, the equivalent command is:

java -jar /jinil_0_1/1ib/tools.jar

-port 8081

-dir /jinii_o_1/1ib

-verbose
The JAR file containing the HTTP Server is
c:\jinil_0_1\lib\tools.jar; this is an "executable JAR"
file (introduced in the Java 2 platform), which means
that it starts a default program (in this case, the
HTTP server) when it's invoked as shown.

Here, you started the HTTP Server at port 8081 (if left
unspecified, the port number would be 8080). The -dir
option specifies which directory the server uses as its
"document root." Here, vyou specified the Jini 1ib
directory as the root, so this HTTP server is able to
serve all the Jini JAR files in that directory (as well
as other classes you might put there). The -verbose
option causes information to be displayed about each
request to the server, and is wuseful for debugging
purposes.

Starting an RMI Activation Daemon

An RMI Activation Daemon is needed by several other
services--the Transaction Manager, the ©persistent
JavaSpaces Service, and the Jini Lookup Service--and an
instance of the daemon needs to be run on each of the
machines where you run these services. What does an
activation daemon do? Suppose you have a service that
you'd like to be automatically restarted if it crashes
(for instance, 1if the machine it is &running on
crashes). Or, suppose you're interested in conserving
computational resources, so you'd like a service to be
brought down when it has no active <clients and

139

reactivated later when a client tries to use the
service. An activation daemon takes care of restarting,
deactivating, and reactivating your services (such as
the Jini services mentioned above).

Let's see how to start an RMI activation daemon. First,
be sure your executable path points to the bin
directory of JDK1.2.2; this is where rmid is located.
Again, make sure that you haven't modified your
CLASSPATH environment variable or placed JAR files in
the Java extensions directory.

Then, to start rmid under Windows or Solaris, the
command takes the form:

rmid [-port port-number] [-log dir]

For example, to start the RMI Activation Daemon on
either Windows or Solaris, you could use the command:
rmid

to start the daemon on the default port of 1098. For

further information on starting rmid, refer to the
manual pages for Solaris

<http://java.sun.com/products/jdk/1.2/docs/tooldocs/sol
aris/rmid.html>

or Windows

<http://java.sun.com/products/jdk/1.2/docs/tooldocs/win
32/rmid.htmls>.

Starting a Lookup Service

A lookup service registers the Jini services available
on the local network, and is used by applications to
locate services such as a JavaSpace. You can currently
choose to use either the RMI registry or the Jini
lookup service to serve this purpose, but you should be
aware that future versions of Jini services may not
support the use of the RMI registry. Therefore, this
document only covers using the Jini lookup service (if
you really want to use the RMI registry, you can find
the details in c:\jinil_0_1\doc\example\StartingService.html) .

The command to start the Jini lookup service takes this
form:

java -Djava.security.policy=security-policy-file

140

-jar C:\jinil_o_1\lib\reggie.jar
lookup-codebase
security-policy-file
log-directory
[lookup-group]
Let's examine each of the parameters.

The -Djava.security.policy option to java specifies a "security
policy file" for the JVM to use when it runs the lookup
service JAR file. The concept of a security policy file is
new in the Java 2 platform; it is used to specify what
resources a program can use when it runs--for example,
whether it is permitted to access system properties, create
and listen to socket connections, write to log files, and so
on--and what level of privileges to grant to any downloaded
code.

The JAR file containing Sun's implementation of the
lookup service (called "reggie") is
€:\jinil_0_1\lib\reggie.jar. Once again, this is an
executable JAR file, which means it will start running
(in a "setup JVM") when it's invoked as shown. First
the remaining parameters are parsed, then the reggie
lookup service is registered with the RMI Activation
Daemon you started earlier on the same machine, and
then the setup JVM exits (don't be alarmed that your
command returns at this point, and that your DOS
window, under Windows, says "Finished"). The lookup
service is activatable: It will be restarted
automatically by the activation daemon after crashes,
and it will shift between "active" and "inactive"
states as appropriate. In this case, the activation
daemon spawns a new "server JVM" to run the lookup
service; in fact, whenever a lookup service is
activated, a new "server JVM" is spawned to run that
instance of the service.

The final four parameters deserve a closer look. The
lookup-codebase option specifies a URL that points to the
reggie-dl.jar file, which contains the code that clients
need to download to use the lookup service. For
example, you might specify a URL to the HTTP server you
started earlier, that is, http://hostname:port/reggie-
dl.jar, where hostname is the name or IP address of the
machine on which the HTTP server is running, and port
is the port number at which it is running. You also
need to ensure that the specified HTTP server can
access reggie-dl.jar under its document root directory.
To test to make sure the JAR file is accessible, you

141

can try accessing it from a browser, using the codebase
URL. Since you started the web server in verbose mode,
you should see a request logged to its screen, and
you'll most likely see a "Save To" dialog box (unless
the browser has been configured to handle .jar files).

The next option, Ilookup-policy-file, specifies another
security policy file. The first security policy file
you specified is used only by the setup JVM, while this
second (potentially different) security policy file is
used by the server JVM whenever the lookup service is
reactivated.

The next parameter, log-directory, specifies an absolute
path name to a directory (on the file system where the
lookup service is running) where the lookup service
writes its logs. It's important to point out that this
directory should not already exist, or the setup JVM
will exit without registering the lookup service.

The final, optional parameter, Ilookup-group, is used to
specify a "group" of services for which reggie provides
lookup service. Usually, you use the special group name
public, which Jini services conventionally join; if you
omit the parameter, the default is public.

Here is an example command for starting the reggie
lookup service on Windows:
java -Djava.security.policy=C:\jinil_ 0_1\example\lookup\policy.all
-jar C:\jinil_o_1\lib\reggie.jar
http://hostname:8081/reggie-dl.jar
C:\jinil_0_1\example\lookup\policy.all
C:\tmp\reggie_log
public
where hostname is the name or IP address of the machine
on which the HTTP server is running.

Here is what the example command looks like on the
Solaris platform:
java -Djava.security.policy=/jinil_0_1/example/lookup/policy.all
-jar /jinil_0_1/lib/reggie.jar
http://hostname:8081/reggie-dl.jar
/3inil_0_1/example/lookup/policy.all
/tmp/reggie_log
public
You should note that using the policy.all file as shown
is fine when you're experimenting with your code, but
it's not recommended for production use, since it
grants all permissions to all code (trusted or not).

142

When deploying your code in a production environment,
make sure you've devised careful policies that restrict
access appropriately (for instance, your policy might
state that downloaded code cannot access certain parts
of your file system). The topic of security in the Java
2 platform is beyond the scope of this article.

Starting a Transaction Manager

If your JavaSpaces applications make use of
transactions, vyou'll need to start a transaction
manager service next, with a command of the form:
java -Djava.security.policy=security-policy-file

-Dcom. sun. jini.mahalo.managerName=txnmanager-name

-jar C:\jinii_0_1\lib\mahalo.jar

txnmanager-codebase

security-policy-file

log-directory

[lookup-group] '
(Note that, if you're using an RMI registry instead of
the Jini Lookup, you'll need to modify the command
slightly; refer to
C:\jinil_0_1\doc\example\StartingService.html.)

The executable JAR file containing Sun's implementation
of the Transaction Manager Service (called "mahalo") is
C:\jinil_o0_1\lib\mahalo.jar. Like the 1lookup service, the
transaction manager service 1is activatable: When the
command above is run, a "setup JVM" registers the
transaction manager with the RMI activation daemon--
which activates the manager in a newly spawned "server
JVM"--and then exits. Once again, the command 1line
returns once the registration is complete, and you
should see a command prompt.

The security-policy-file options mean what you would
expect, given our previous discussion about starting
the Jini Lookup Service: The -Djava.security.policy option
governs the permissions the setup JVM uses, while the
second security-policy-file option specifies the
permissions that the server JVM uses whenever the
Transaction Manager Service is activated.

The option -Dcom.sun.jini.mahalo.managerName allows you to
specify a name (such as "TransactionManager") for the
transaction manager if you wish: this name becomes an
attribute attached to the transaction manager in the

143

lookup service, and can be used to 1look wup this
particular transaction service later on.

Just as you did with the lookup service, you need to
supply a codebase option to the service, specifying a
URL to the mahalo-dl.jar file, which contains the code
that clients need to download to use the transaction
manager service. For example, you might supply a URL
pointing to the hostname and port number of the HTTP
server you started earlier. Be sure that the specified
HTTP server can access mahalo-dl.jar under its root
directory. Once again, you may want to try accessing
the JAR file using a web browser and your codebase URL,
to make sure the file is accessible.

The next parameter, log-directory, should specify an
absolute path name to a directory (on the file system
where the Transaction Manager service is running) where
the service writes its logs. You should make sure that
the log file doesn't already exist.

For the last (optional) parameter, you can specify the
name of a Jini group for the Transaction Manager to
join; for example, public means the manager should
become part of the public group.

Here's an example of starting a Transaction Manager,
using the Jini Lookup service, on Windows:
java -Djava.security.policy=C:\jinil_0_1\example\txn\policy.all
-jar C:\jinil_0_1\lib\mahalo.jar
http://hostname:8081/mahalo-dl.jar
C:\jinil_o0_1\example\txn\policy.all
C:\tmp\txn_log
public
where again, hostname is the name or IP address of the
machine on which the HTTP server is running. On
Solaris, the command looks like this:
java -Djava.security.policy=/jinil 0_1/example/txn/policy.all
-jar /jinil_0_1/lib/mahalo.jar
http://hostname:8081/mahalo-dl.jar
/jinil_0_1/example/txn/policy.all
/tmp/txn_log
public

Starting a JavaSpaces Service

Now that you've started all the supporting services
(HTTP Server, RMI Activation Daemon, Jini Lookup

144

Service, and Transaction Manager Service), you can
finally start a JavaSpaces service (Sun's
implementation is known as "outrigger"). You can choose
to start either a JavaSpaces service called
TransientSpace (one that doesn't maintain data across
crashes and restarts of the space) or a persistent
JavaSpaces service called FrontEndSpace (one that does
maintain data across crashes and restarts).

Starting a Transient JavaSpace

To start a TransientSpace JavaSpaces service, given that
you're running a Jini Lookup Service, the command takes
the following form:
java -Djava.security.policy=security-policy-file
-Djava.rmi.server.codebase=javaspace-codebase
-Dcom.sun.jini.outrigger.spaceName=space-name
-jar C:\jinil_o_1\lib\transient-outrigger.jar
[lookup-group]
(Refer to ¢:\jinil_0_1\doc\example\StartingService.html for
the details of formatting the command if you're using
an RMI registry instead.)

Let's examine the parameters. The security-policy-file
option governs the permissions the JVM uses when
running the JavaSpaces service. The javaspace-codebase
option specifies a URL that points to the outrigger-
dl.jar code that clients must download in order to use
the JavaSpaces service. The -
Dcom.sun.jini.outrigger.spaceName option is used to specify
a name for the JavaSpaces service (for example,
"JavaSpaces"). And as you saw with the transaction
manager service, you can optionally specify the name of
a Jini community for this service to join.

It's worth noting here that a transient JavaSpace
service is not an activatable service, and the command
above is handled by just a single JVM. This is why you
don't need to pass additional arguments (codebase,
security-policy-file, log-directory) at the end of the
command as vyou did for the lookup service and
transaction manager service. The JVM that executes the
command will continue to run until the JavaSpaces
service exits or gets killed, so unlike the activatable
services, you will not be returned to the command
prompt while the space is running.

145

Here's an example of starting a transient JavaSpace,
using the Jini Lookup service, on Windows:
java -Djava.security.policy=C:\jinil_0_1\example\books\policy.all
-Djava.rmi.server.codebase=http://hostname:8081/outrigger-dl.jar
-Dcom.sun.jini.outrigger.spaceName=JavaSpaces
-jar C:\jinil_0_1\lib\transient-outrigger.jar
public
On the Solaris platform, the equivalent command looks
like this:
java -Djava.security.policy=/jinil_0_1/example/books/policy.all
-Djava.rmi.server.codebase=http://hostname:8081/outrigger-dl.jar
-Dcom.sun.jini.outrigger. spaceName=JavaSpaces
-jar /jinii_0_1/lib/transient-outrigger.jar
public

Again, you should note that the policy.all file is fine
for your code experimentation, but you should revisit
the security policy issue when you deploy your code in
a production environment.

Starting a Persistent Javaspace

In a deployment environment, you're likely going to
want to run a persistent FrontEndSpace JavaSpaces service
rather than a transient JavaSpaces service. A
FrontEndSpace is able to maintain its data, even through
crashes and restarts of the space.

To start a FrontEndSpace JavaSpaces service, given that
you're running a Jini Lookup Service, the command takes
the following form:
java -Djava.security.policy=security-policy-file

-Dcom.sun.jini.outrigger.spaceName=space-name

-jar C:\jinil_o0_1\lib\outrigger.jar

javaspace-codebase

security-policy-file

log-directory

[lookup-group]

Since FrontEndSpace is an activatable JavaSpaces service,
you'll notice some differences from starting a
transient space. First, the codebase is specified
differently. Second, you must supply a second security
policy file (as you did when starting the lookup
service and the transaction manager, to be used when
the service 1is reactivated by the RMI Activation
Daemon) . Last, you must supply an absolute path name to
a directory where the JavaSpaces service writes log
files.

146

Note that outrigger.jar contains all the classes needed
for the JavaSpaces service to run a FrontEndSpace. Here's
an example of starting a FrontEndSpace, using a Jini
Lookup service, on the Windows platform:
java —Djava.security.policy:C:\jini1_0_1\examp1e\books\policy.all
-jar C:\jinil_o0_1\lib\outrigger.jar
http://hostname:8081/outrigger-dl.jar
-Dcom.sun.jini.outrigger.spaceName=JavaSpaces
Cc:\jinil_o0_1\example\books\policy.all
C:\tmp\js_log
public
Here's an example of starting a FrontEndSpace on
Solaris:
java —DjaVa.security.policy:/jini1_0_1/example/books/policy.all
-jar /jinil_0_1/lib/outrigger.jar
http://hostname:8081/outrigger-dl.jar
-Dcom.sun.jini.outrigger.spaceName=JavaSpaces
/jinil_0_1/example/books/policy.all
/tmp/js_log
public
As' you saw with other activatable services, issuing
these commands returns a command prompt.

Compiling JavaSpaces Programs

By now, you have all the required Jini services up and
running. Assuming you've already written a JavaSpaces client
program (one that makes use of a JavaSpaces service), all
that's left is to compile your code and run it.

If you wish, you can experiment with a very simple " Hello
World " program from JavaSpaces Principles, Patterns and
Practice. You need to edit the compile.bat file and replace
localhost:8081 with the IP address and port number of your web
server, and then you can simply run compile.bat and runit.bat
to get the example up and running under Windows.

When compiling JavaSpaces programs, the javac compiler (and
later the java bytecode interpreter) may need access to
several different jar files:

e jini-core.jar, which contains the core Jini interfaces
and classes and is needed whenever your program makes
use of leases or events, for example.

e jini-ext.jar, which contains additional interfaces that

are useful in building Jini applications, including the
JavaSpaces interface.

147

® sun-util.jar, which contains a set of useful helper
utilities. These classes may change, however, since
they are regarded as non-standard.

¢ space-examples.jar, which contains +various JavaSpaces
technology examples and includes the classes
com.sun.jini.mahout.Locator, com.sun.jini.outrigger.LookupFinder,
and com.sun.jini.outrigger.Finder, which are needed when
compiling the spaceAccessor.java code found in Chapter 1
of the JavaSpacesTM Principles, Patterns and Practice
<http://www.amazon.com/exec/obidos/ASIN/0201309556/>.

When compiling your JavaSpaces programs, supply a -classpath
option to the javac compiler. For example, to compile
ExampleProgram.java on Windows, the command might look 1like
this: '
javac -d . -classpath

C:\jinil_o_l\lib\jini—core.jar;

C:\jinil_0_1\1ib\jini-ext.jar;

C:\jinil_o0_1\lib\sun-util.jar;

C:\jinil_0_1\lib\space-examples.jar;.;

ExampleProgram.java
Note that these JAR files might not all be necessary for
every compilation; it depends on the specifics of the
program you're compiling. Also note the use of the -4
option; here it is used to specify that class files should
be created in the current directory. The .; appearing at the
end of the classpath option indicates that the current
directory is searched for classes, along with the JAR files
listed. You should tailor these options according to where
you want your class files stored.

On Solaris, the equivalent command looks like this:
javac -d . -classpath

/jinil_0_1/1ib/jini-core.jar:

/3inil_0_1/1ib/jini-ext.jar:

/3inil_0_1/1ib/sun-util.jar:

/3jinil_0_1/lib/space-examples.jar:. :

ExampleProgram.java
Alternately, you could specify the required JAR files in the
CLASSPATH environment variable or place JAR files in the
Java extensions folder. However, during the code development
phase--when you're likely running a JavaSpaces service and
client programs on the same machine--avoiding these
modifications to the classpath environment is a good policy:
It helps to avoid unintended sharing of class files, and to
simulate a deployment environment--when Jini services, such
as a JavaSpace, and client programs that make use of them

148

are likely to run on different machines. Avoiding use of the
CLASSPATH and Java extensions can help to reduce the
problems you'll encounter when you move from development to
deployment.

Running JavaSpaces Programs

Now that you've compiled your JavaSpaces programs, you're
ready to run them. Assuming you're running the Jini Lookup
service on the Windows platform, the command takes this
form:
java -Djava.security.policy=C:\jinil_0_1\example\books\policy.all
-Doutrigger.spacename=JavaSpaces
-Dcom.sun.jini.lookup.groups=public
-cp C:\jinil 0_1\lib\space-examples.jar;
C:\jinii_o_1\lib\jini-core.jar;
C:\jinil 0_1\lib\jini-ext.jar;
—Djava.rmi.server.codebase:http://hostname:8081/space—examples-dl.jar
ExampleProgram

On Solaris, the command takes this form:

java -Djava.security.policy=/jinil_0_1/example/books/policy.all
-Doutrigger.spacename=JavaSpaces
-Dcom.sun.jini.lookup.groups=public
-cp /jinil_0_1/1ib/space-examples.jar:

/jinil_0_1/l1lib/jini-core.jar:

/jinil_o0_1/l1ib/jini-ext.jar:
-Djava.rmi.server.codebase=http://hostname:8081/space-examples-dl.jar
ExampleProgram

Let's take a look at each of the parameters. The -
Djava.security.policy option specifies the path to the security
policy file you'd like your program to use when it runs
downloaded code (for example, if your program retrieves an
entry from a JavaSpace and invokes one of its methods). If
you find none of the policy files provided in the Jini
distribution to be suitable, you'll have to modify one to

meet your needs.

With the -Doutrigger.spacename option, you can specify the name
of the specific JavaSpaces service you'd like your program
to use (with the command above, you're specifying that your
program should interact with a space called "JavaSpaces", if
one can be found, not one called "Old JavaSpace" or anything
else.

The -Dcom.sun.jini.lookup.groups option specifies which Jini
community this program runs under (here, the public group) .

149

The Java bytecode interpreter (java) needs access to several
JAR files; the exact ones depend on what your program does.
Refer to the list of JAR files in Compiling JavaSpaces
Programs.

The codebase property needs to be set if your program is
exporting downloadable code, for instance if your program is
writing entries into a JavaSpace. In this case, when other
programs read or remove those entries, they need to know
where they can download the classes for those entries. This
information is provided by your program, which annotates the
entries it writes into the space with information from the
codebase property. The codebase property also needs to be set
if your program is requesting notification services from any
of the Jini services; in this case the "listener" code needs
to be exported.

150

[BER99]

[CAR89]

[GEL85]

[JOY99]

[KEI99]

[KIM95]

[KUHN99]

[LEVO0O]

LIST OF REFERENCES

Naval Postgraduate School Report NPSCS-00-001,
Interoperability Technology Assessment for Joint
C4ISR Systems, by Valdis Berzins, Lugi, Bruce
Shultes, Jiang Guo, Jim Allen, Ngom Cheng, Karen
Gee, Tom Nguyen, and Eric Stierna , September
1999.

Nicholas Carriero, and David Gelernter, “How to
Write Parallel Programs: A Guide to the
Perplexed’” ACM Computing Surveys, September 1989,

pp.102-122. '

David Gelernter, “Generative Communication in
Linda”, ACM Transaction on Programming Languages
and Systems, Vol. 7, No. 1, January 1985, pp. 80-
112.

Bill Joy, The Jini Specification, Addison Wesley,
Inc., 129°99.

Edward Keith, Core Jini, Prentice Hall, PTR,
1999.

Eun-Gyung Kim, “A Study on Developing a
Distributed Problem Solving Systent’ IEEE
Software, January 1995, pp. 122-127.

Fred Kuhns, Carlos O’Ryan, Douglas Schmidt,
Ossama Othman, and Jeff Parsons, “The Design and
Performance of a Pluggable Protocols Framework
for Object Request Broker Middleware”, IFIP 6%
International Workshop on Protocols For High-
Speed Networks (PfHSN’ 99), August 25-27, 1999.

David Levein, Sergio Flores-Gaitan, and Douglas
Schmidt, “An Empirical Evaulation of OD Endsystem
Support for Real-time CORBA Object Reguest
Brokers”, Multimedia Computing and Network 2000,
January 2000.

151

[LUQ88]

[LUQ89]

[LUQ92]

[LUQo8]

[SUL99]

[WOL89]

[XUL89]

[YAN99]

Lugi, and Valdis Berzins, “Rapidly Prototyping
Real-Time Systems”, IEEE Software, September
1988, pp. 25-35.

Naval Postgraduate School, A Proposed Design for
a Rapid Prototyping Language, by Lugi, Valdis
Berzins, Bernd Kraemer, and Laura White, March
1989

Lugi, Mantak Shing, “CAPS - A Tool for Real-Time
System Devleopment and Acquisition”, Naval
Research Review, Vol 1, 1992, pp.12-16.

Lugi, Valdis Berzins, and Raymond Yeh, ™A
Prototyping Language for Real-Time Software”,
IEEE Software, October 98, pp.1409-1423.

Kevin Sullivan, Mark Marchukov, and John Socha,
“Analysis of a Conflict Between Aggregation and
Interface Negotiation in Microsoft’s Component
Object Model” IEEE Transactions on Software
Engineering, Vol. 25, No. 4, July/August 1999,
pp. 584-599.

Antoni Wolski, “LINDA: A System for Loosely
Integrated DataBases”’, IEEE Software, January
1989, pp. 66-73.

Andrew Xu, and Barbara Liskov, “A Design of a
Fault-Tolerant, Distributed Implementation of
Linda”, IEEE Software January 1989, pp. 199-206.

Jingshuang Yang, and Gail Kaiser, “JPernLite:
Extensible Transaction Services for the WwWw’,
IEEE Transactions on Knowledge and Data
Engineering, Vol. 11, No. 4, July/August 1999,
pPp. 639-657.

152

INITIAL DISTRIBUTION LIST

Defense Technical Information Center................
8725 John J. Kingman Rd., STE 09544
Ft. Belvior, Virginia 22060-6218

Dudley Knox Library........cceeiiiiiiiiiiiinenns
Naval Postgraduate School

411 Dyer Road

Monterey, California 93943-5101

Chairman, Code CS... ..ttt ittt iteeeeonnnanoanannecnns
Naval Postgraduate School
Monterey, California 93943-5101

Dr. Valdis Berzins, Code CS/BE. ...t teneeennns
Computer Science Department

Naval Postgraduate School

Monterey, California 93943-5101

Dr Lugi, Code CS/LQ. « ittt ittt iieieeaeaan cannuaanan
Computer Science Department

Naval Postgraduate School

Monterey, California 93943-5101

Dr. Swapan Bhattacharya............iiiiiiiian...
Computer Science Department

Naval Postgraduate School

Monterey, California 93943-5101

Ref Delgado. .o v ittt ittt it i i eietiseeaennn
Defense Advanced Research Projects Agency

3701N, Fairfax Drive

Arlington, VA 22203-1714

Dr. David HiSlop. .ot v ittt iiiiieneeeeeeanneneanenenns
US Army Research Office

Mathematical & Computer Science Divison

4300 Miami Blvd.

Research Trangle Park, NC 27709

Col John A. Hamiltom. ... v i iiiieetineeeinnnnenennans
Office of Chief Engineer

Space & Naval Warfare Systems Command

4301 Pacific Highway

San Diego, CA 952110-3127

153

10.

Mr. Cheng Heng NOOM . . .vv it it enenennnnneneenennnns
Blk 75, #08-132,

Bedok North Road

Singapore, Singapore 460075

154

